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Abstract

Background: Lethal dose 50% is a classical index of toxicity that usually employs small rodents as experimental
animals. Therefore, scarce data are available on the effects of venom on invertebrates, particularly the impact of
wasp venom on its own species.

Findings: In the present study, the lethality of Vespa crabro venom on its own species was studied. Lethal dose
50% values of crude venom on workers of hornet Vespa crabro were estimated to be 4.0 mg/kg of body weight.

Conclusions: Wasps can use their venom apparatus effectively when attacking foreign workers that appear in the
immediate vicinity of their nest. The toxins released during stinging are potent enough to kill. The result of this
study eliminates the popular myth that venomous animals can be resistant to their own venom.
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Findings
The classical method of determining the toxicity of a
substance is the lethal dose 50% (LD50), which is often
used in analysis of different animal toxins [1-6]. Almost all
studies about venom activity are based on the lethality of
small rodents including mice and rats. There is little
published data on the effects of venom on invertebrates
[7]. Only a few studies on the lethal activity of a venom on
its own species demonstrated significant results [8]. In
addition, the degree of toxicity of venoms on individuals
of their own species is unknown.
In the present study the toxicity of the European

hornet Vespa crabro (Linnaeus, 1758) venom in relation
to workers of its own species was assessed. Based on the
author’s own personal observations, it can be stated that
hornets also sting to defend their nest against intruders
of their own species, but from alien colonies. Thus, this
study attempted, for the first time, to answer the following
questions: did natural selection create defense mecha-
nisms to protect these insects against their own toxins
and how hornets are sensitive to their own venom?
The analysis of the toxic activity of Vespa crabro

venom was carried out on workers from two colonies of
hornets established in Łódź city in Central Poland.
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Hornet venom was obtained by irritating insects with
tweezers on their torso and abdomen, resulting in sting-
ing reaction. The secreted venom was collected on
watch glasses [8]. Then, frozen dried venom was stored
in the dark at −20°C until used. In order to obtain
percent values of dry matter from liquid venom, speci-
fied quantities of venom were weighed [6]. The final
venom concentration was adjusted with PBS (137 mM
NaCl, 10 mM phosphate, 2.7 mM KCl, pH 7.4) [7].
After weighing, each hornet worker received, into the

abdomen, the appropriate amount of venom by using a
1 μL Hamilton microsyringe (USA). LD50 values for
hornet workers (twenty workers per dose) at 24 hours
were determined by the standard statistic method based
on probit analysis [9-14]. Controls consisted o hornets
injected only with PBS.
Table 1 displays the toxicity of Vespa crabro venom

assessed on representatives of its own species. The
obtained results underwent statistical analysis, including
probit transformation, and the final value of LD50 is
presented in Table 2.
The LD50 of several aculeate venoms has been deter-

mined, including toxins of different hornet species,
ranging from 1.6 mg/kg for Vespa luctuosa Saussure
venom, 2.8 mg/kg for Vespa tropica L., 3.1-3.8 mg/kg
for Vespa simillima Smith, 4.1-6.1 mg/kg for Vespa
mandarinia Smith venom, to 8.7-10.9 mg/kg for the
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Table 1 Analysis of probit-transformed mortality of European hornet Vespa crabro workers provoked by their own
venom

Dose (mg/kg of body
weight)

Log
dose

Actual
mortality (%)

Probit-transformed actual
mortality

Expected
probit

Expected
mortality (%)

Chi-squared
statistic

Degrees of
freedom

10 1 90 6.28 6.00 80 2.71 8

9 0.95 75 5.67 5.88 81

8 0.90 70 5.52 5.75 77

7 0.85 75 5.67 5.63 74

6 0.78 60 5.25 5.45 67

5 0.70 50 5.00 5.25 60

4 0.60 55 5.13 5.01 50

3 0.48 40 4.75 4.71 39

2 0.30 25 4.33 4.26 23

1.5 0.18 20 4.16 3.96 15

Chi-squared test was not significant.
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venom of Vespa crabro [5,8]. However, all these values
refer only to the mortality on experimental rodents,
especially mice and rats. As shown by a previous study
carried out on Calliphora sp. larvae, the toxicity of
Vespa crabro venom is increased on these insects when
compared to vertebrates, and is approximately about
2.7-7.6 mg/kg [8]. Thus, these results support the
hypothesis of greater toxicity of hornet venom on its
potential prey (other insects), than on mammal aggres-
sors. Other hymenopterans have more potent venoms,
such as the solitary wasp Bracon hebetor Say. Its LD50

on lepidopterous larvae was found to be less than
0.3 mg/kg [15].
Venoms of arthropods, including insects, comprise a

source of numerous bioactive compounds, which evolved
for prey capture and defense against predators and micro-
organisms. The antimicrobial, insecticidal, and hemolytic
properties of peptides isolated from arthropod venoms are
well known, especially concerning arachnids (scorpions
and spiders) and hymenopterans (ants, wasps and bees)
[15-19]. Many of these peptides have been purified and their
amino acid sequences have already been characterized.
The composition and properties of the several aculeate

venoms, including those of wasps and hornets, have
been extensively studied [4-6,20-25]. On mammals,
vespid venoms provoke prolonged pain, local edema and
erythema due to increased permeability of blood vessels
Table 2 Estimated 95% confidence interval for the LD50

of hornet’s workers Vespa crabro L. and standard error
(SE) of LD50

Species LD50 (mg/kg) SE of

24 h (95% CI) LD 50

Vespa crabro workers 4.0 mg/kg 0.39
in the skin. Besides these direct outcomes of hornet stings,
allergic reactions have also been observed in numerous
cases. The generalized allergic reaction may be lethal.
In addition to their systemic effects, wasp and hornet

venoms act kinetically on isolated smooth muscle and
reduce blood pressure. They release endogenous hista-
mines from granulocytes including mast cells and baso-
philic leucocytes; and also release catecholamines from
adrenal chromaffin cells. Such toxins may also provoke
cytolysis, including hemolysis and chemotaxis to macro-
phages and polymorphonuclear leukocytes.
The overall action of wasp and hornet venoms is com-

plicated and may be described as an accumulation of
active principles of venoms. Compounds of several wasp
venoms, including venom toxins from social wasps and
hornets, have been isolated and investigated. Such
venoms consist of complex mixtures of active amines
(serotonin, histamine, tyramine, dopamine noradrenaline
and adrenaline), peptides (pain-producing peptides such
as kinins, and chemotactic peptides like mastoparan or
crabrolin) and proteins including many types of hydro-
lases (i.e. proteases, hyaluronidases, phosphatases, nucle-
otidases and phospholipase A), as well as allergens and
neurotoxins.
Many social insects have developed defensive systems

that prevent infections within their colonies. For ex-
ample, bee propolis and royal jelly present antimicrobial
properties and the fecal pellets of termites inhibit the de-
velopment of fungal pathogens [26,27]. Concerning ants,
most species possess metapleural glands on the thorax
whose secretions, spread over individuals and through-
out the nest, have a broad spectrum of antimicrobial
action. The antibacterial property of ant venom has been
demonstrated, for example, in the fire ant, whose venom
alkaloids inhibit bacterial growth and presumably act as
an antibiotic [28]. Venoms of honey bees, wasps and
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hornets, including Vespa crabro, possess antimicrobial
peptides; however, their natural functions must be
further clarified [26,29,30].
In addition to the development of social behavior,

aculeate venom composition underwent evolution to-
wards producing toxins that would be more effective
against potential attackers. Usually solitary wasp venoms
are employed primarily to paralyze and then kill prey
[23]. Although Vespinae subfamily produces venoms that
are efficient for hunting and self-defense, the most
effective venom regarding defense is that of Apis mellifera
[8,22]. Its main component is melittin, a powerful deter-
gent that provokes hemolysis of red blood cells [30,31].
Aculeate venoms are used not only to attack prey, but

also to defend the colony against foreign individuals
[32]. Observations by the present author demonstrate
the importance of hornet sting in nest defense against
other colonies. Wasps use their venom apparatus effect-
ively when attacking foreign workers that appear in the
immediate vicinity of their nest. The toxins released in
such cases are potent enough to kill (LD50 = 4.0 mg/kg
of hornet body weight – Table 2). The determination of
LD50 eliminates the popular myth that venomous
animals can be resistant to their own venom.
The present results indicate that Vespa crabro venom

is toxic for its own species as well as to other insects.
Therefore, although both are predators, wasps and hor-
nets as are natural allies against different pest insects
and the effectiveness of their venom is proven by the
relatively high values of LD50.
Potent venoms represent a source of new insecticidal

compounds because they act selectively on their molecu-
lar targets. Such toxins affect the invertebrate nervous
system and several insecticidal compounds that belong
to the class of peptides or polyamine-like compounds
have been purified and characterized from the venom of
several hymenopterans. Numerous studies are focused
on isolating and assessing the lethality of insecticidal
toxins from wasps. Their venoms are expected to be
used for manufacture of bioinsecticides with high select-
ivity for different groups of insects [29].
Animal venoms have been employed in the analysis of

different physiopathological processes, and have also
been involved in the design of new therapeutic drugs.
Wasp toxins, due to their biological effects, may consti-
tute potential sources of pharmacologically active com-
pounds particularly for neuropharmacology [33]. Finally,
it is worth noting that various components of venoms
from wasps and bees can be used for human therapy. A
classic example is the honeybee venom, which is widely
employed in natural medicine (apitherapy).
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