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Abstract

Background: The hemolytic activity of skin secretions obtained by stimulating the frog Kaloula pulchra hainana with
diethyl ether was tested using human, cattle, rabbit, and chicken erythrocytes. The skin secretions had a significant
concentration-dependent hemolytic effect on erythrocytes. The hemolytic activity of the skin secretions was studied in
the presence of osmotic protectants (polyethylene glycols and carbohydrates), cations (Mg2+, Ca2+, Ba2+, Cu2+, and K+),
or antioxidants (ascorbic acid, reduced glutathione, and cysteine).

Results: Depending on their molecular mass, osmotic protectants effectively inhibited hemolysis. The inhibition of
skin hemolysis was observed after treatment with polyethylene glycols (1000, 3400, and 6000 Da). Among divalent
cations, only 1 mM Cu2+ markedly inhibited hemolytic activity. Antioxidant compounds slightly reduced the
hemolytic activity.

Conclusions: The results suggested that skin secretions of K. pulchra hainana induce a pore-forming mechanism
to form pores with a diameter of 1.36-2.0 nm rather than causing oxidative damage to the erythrocyte membrane.
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Background
The skin of amphibians has numerous biochemical and
physiological functions to assure amphibian survival.
Several bioactive components with specialized functions
and molecular structures have been isolated and purified
from amphibian skin [1,2]. Some of these components
and their analogs have been used for treating diseases such
as microbial infections and burns [1,3]. Thus, increasing
numbers of studies have focused on amphibian skin
secretions to identify biologically active proteins and
peptides [1,4].
Cnidarian venom is an abundant source of numerous

bioactive molecules such as pore-forming proteins, small
cytotoxic peptides, 5-hydroxytryptamine, and histamine.
Of the cytolytic, hemolytic, and neurotoxic effects of
Cnidarian venom, hemolytic activity is the most commonly
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reproduction in any medium, provided the or
investigated [5-7]. Hemolysis induced by Cnidarian venom
toxins has been particularly investigated to identify targets
and the attachment of proteins to cell membranes [8,9].
Kaloula pulchra hainana (Anura) is an endemic

amphibian found in the low elevation regions of Hainan
Island of China. These frogs always live near pools, which
is a harsh environment with numerous pathogens. When
these frogs are stimulated, their belly bulges and white
secretion is released from their skin. In a previous study,
we purified and characterized a 23-kDa trypsin inhibitor
from the skin secretions of K. pulchra hainana, designated
K. pulchra hainana trypsin inhibitor (KPHTI) [10].
Skin secretions of the frog K. pulchra hainana also

exhibit hemolytic activity. This study aimed to establish
basic information on erythrocyte hemolysis and cell
membrane peroxidation induced by these skin secretions.
To determine the toxicological properties of the skin
secretions, we investigated the effects of different factors
on erythrocyte hemolysis, including osmotic protectants,
cations, antioxidants, and chelating agents.
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Methods
Materials
N-acetyl-D-galactosamine (NAGA), N-methylmannopy-
ranose, D-glucose, D-trehalose, D-lactose, reduced
glutathione (GSH), and bovine serum albumin (BSA) were
purchased from Sigma-Aldrich (USA). Polyethylene
glycols (PEGs) of different molecular masses (300, 400,
1000, 3400, and 6000 Da) were obtained from Fluka
(USA). The protein concentrations of skin secretions were
determined using a protein assay kit (Bio-Rad, USA) with
BSA as a standard [11]. All other reagents used were of
the highest purity available.

Preparation of skin secretions
Adult specimens of K. pulchra hainana of both genders
(n = 10; weight range: 80–120 g) were collected in
Danzhou City, Hainan Province in southern China. The
skin of the frogs was briefly stimulated with diethyl ether
and then washed with 50 mM Tris–HCl buffer (pH 7.8)
containing 0.1 M NaCl and 5 mM ethylene diamine
tetraacetic acid (EDTA). The secretions were centrifuged
at 10,000 g for 20 minutes at 4°C to remove insoluble
materials. The supernatant was collected, lyophilized,
and stored at −80°C until use. Before an experiment, the
lyophilized skin secretions were dissolved in phosphate-
buffered saline (PBS) (137 mM NaCl, 1.5 mM KH2PO4,
2.7 mM KCl, 8.1 mM Na2HPO4) and then dialyzed
against PBS.

Hemolysis determinations
The hemolytic activity of skin secretions was determined
using human, cattle, rabbit, and chicken erythrocytes, as
reported by Liu et al. [12]. Erythrocytes from these species
were washed with PBS until the supernatant was clear
and then resuspended in PBS. Erythrocyte suspensions
(5 × 106 cells/mL) were incubated with different concen-
trations of skin secretions (0.28, 0.56, 1.4, 2.8, 4.2, and
5.6 μg/mL) at 37°C for 30 minutes and then centrifuged
at 1000 g for 5 minutes at 4°C to precipitate intact
erythrocytes and debris. The supernatants were assayed
for absorbance at 540 nm to determine the percentage
of hemoglobin released from the lysed erythrocytes. We
defined 100% lysis as the absorbance of a supernatant
obtained using 1% Triton X-100 instead of test samples.
The hemolytic activity of the skin secretions was
expressed as the percentage of absorbance compared with
that observed after 100% lysis induced by Triton X-100.
The supernatant of an untreated erythrocyte suspension
in PBS was used as a spectrophotometric blank.

Determination of membrane pore diameters
The diameters of membrane pores induced by skin
secretions were determined as described previously [13].
In brief, 40 mOsm PEGs of various molecular masses
(300, 400, 1000, 3400, and 6000 Da) were added to PBS
to counteract the osmotic pressure of hemoglobin [14].
Following this, by changing the concentration of NaCl,
the total osmotic pressure of the extracellular fluid was
adjusted to 295 mOsm. After human erythrocytes were
suspended in a PEG solution (5 × 106 cells/mL), the
hemolytic activity of skin secretions was determined as
described above. The hydrodynamic diameters of PEG
300, 400, 1000, 3400, and 6000 were 1.16, 1.36, 2.0, 3.8,
and 5.8 nm, respectively [13,15].

Osmotic protectants
The following osmotic protectants were used: 5 mM
NAGA, 10 mM N-methylmannopyranose, 25 mM D-
glucose, 25 mM D-trehalose, and 25 mM D-lactose.
Each of these was added to erythrocytes suspended in
PBS. After skin secretions (5.6 μg/mL) were added
and incubated at 37°C for 30 minutes, the hemolytic
activity was determined as described above. For osmotic
protectants with large molecular masses, erythrocytes were
preincubated with PEG 6000 for 10 minutes, following
which erythrocytes were removed and resuspended in PBS.
Following this, skin secretions (0.7, 1.4, or 5.6 μg/mL)
were added and hemolytic activity was determined.

Cations and EDTA
Different cations (KCl, BaCl2, MgCl2, CuSO4, or CaCl2)
were individually mixed with erythrocyte suspensions,
following which skin secretions (1.4 or 5.6 μg/mL) were
added and incubated at 37°C for 30 minutes and
hemolytic activity was determined. The final concentration
of CaCl2, BaCl2, MgCl2, and KCl was 10 mM, whereas that
of CuSO4 was 1 mM. The effect of EDTA (0.1 mM,
0.2 mM, or 1 mM) was also determined.

Antioxidants
Ascorbic acid, GSH, and cysteine were used to assess
possible erythrocyte cell membrane oxidative damage
induced by skin secretions. An antioxidant (2 mM) was
added to an erythrocyte suspension, following which
skin secretions were added (5.6 μg/mL) and hemolytic
activity was determined.

Statistical analysis
Results are given as means ± standard error (SE) for ten
experiments. Results for different experimental conditions
were compared by Student’s t-tests. A p-value < 0.05 was
considered significant [16].

Results
Hemolytic activity of K. Pulchra hainana skin secretions
The frog skin secretions induced the hemolysis of eryth-
rocytes from different species in a dose-dependent manner
(Figure 1). The sensitivities of these erythrocytes to the



Figure 1 Hemolytic activity of skin secretions from Kaloula
pulchra hainana tested with erythrocytes from different
species: human (□), cattle (Δ), rabbit (○), and chicken (▼ ).
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secretions were different; the most sensitive erythrocytes
were human erythrocytes. For human erythrocytes, the
percent hemolysis was 19.8 ± 3% with 0.28 μg/mL of skin
secretions, while total hemolysis was 90.3 ± 4% with
5.6 μg/mL of skin secretions. Among the four species
examined, chicken erythrocytes were the least susceptible
to these skin secretions; the hemolytic activity was
approximately 60.5 ± 2% with the highest concentration
of skin secretions (5.6 μg/mL).
The hemolytic activity of the skin secretions was tested

in the presence of PEGs with different hydrodynamic
diameters: 300, 400, 1000, 3400, and 6000 Da. These
were used to estimate pore diameters in erythrocyte cell
membranes. Hemolysis induced by the skin secretions
was not affected by treatment with PEG 300, it was
partially inhibited by PEG 400, and markedly inhibited
by treatment with PEGs 1000, 3400, and 6000 (p < 0.05,
compared with no PEGs; Figure 2).
Figure 2 Osmotic protection against hemolytic activity using a series
Aliquots of skin secretions from Kaloula pulchra hainana (0.7, 1.4, or 5.6 μg/
concentration of 25 mM (n = 10). **p < 0.01.
Effects of osmotic protectants on hemolytic activity
Erythrocyte suspensions were first pretreated with 25 mM
PEG 6000 for 5 minutes, following which erythrocytes
were removed and resuspended in PBS. Following
this, skin secretions (0.7, 1.4, or 5.6 μg/mL) were
added to test their hemolytic activities. The erythrocytes
were hemolyzed equally compared with controls, which
supported that the larger PEG molecules did not bind to
the membrane to reduce the interaction between the cell
membrane and skin secretions. However, because PEG
6000 is an osmotic protectant, it maintained the medium
as more hypertonic and blocked membrane pores induced
by the skin secretions.
Compared with the controls, the osmotic protectants

with small molecular masses, including NAGA, D-glucose,
methylmannopyranose, trehalose, and lactose, did not
significantly inhibit the hemolytic activity of the skin
secretions (Table 1).
Effects of cations and EDTA on hemolytic activity
The effects of different cations on the hemolytic activity of
the skin secretions were assessed using the divalent
cations Ca2+, Mg2+, Ba2+, and Cu2+ and the monovalent
cation K+. Except for Cu2+, these cations at concentrations
of < 10 mM did not affect the hemolytic activity compared
with the control (data not shown). Cu2+ at a concentration
of 1 mM significantly inhibited the hemolytic activity at
skin secretion concentrations of 1.4 and 5.6 μg/mL,
whereas 10 mM Mg2+, Ca2+, and K+ had slight inhibitory
effects (Figure 3). EDTA at any of the concentrations used
did not inhibit hemolysis (Table 1).
Effects of antioxidants on hemolytic activity
The antioxidants cysteine, GSH, and ascorbic acid
(2 mM) reduced the hemolysis induced by skin secretions,
with results ranging from 14 to 20% (Table 1). However,
of polyethylenglycols (PEGs; 300, 400, 1000, 3400, and 6000 Da).
mL) were added to erythrocyte suspensions containing PEGs at a final



Table 1 Effect of different agents on the hemolytic
activity of skin secretions of Kaloula pulchra hainana

Agent Inhibition (%)

Carbohydrates

D-glucose (25 mM) 12.1

D-trehalose (25 mM) 15.6

D-lactose (25 mM) 11.9

N-methylmannopyranose (10 mM) 6.9

N-acetyl-D-galactosamine (10 mM) 11.7

Antioxidants

GSH (2 mM) 20.9

Cysteine (2 mM) 14.3

Ascorbic acid (2 mM) 14.7

Chelator

EDTA (0.1 mM) 5

EDTA (0.2 mM) 7.3

EDTA (2 mM) 10

Hemolytic activity was assessed using skin secretions with a final
concentration of 5.6 μg/mL. Percent inhibition with respect to the control is
the mean of 10 experiments.
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these results were not significantly different from those
of controls.

Discussion
Amphibian skin is a convenient source of substantial
amounts of granular gland secretions from which numerous
components with specialized functions have been isolated
and characterized [1,2,17,18]. In a previous study, we
found that the skin secretions from K. pulchra hainana
exhibited diverse biological activities, including protease
inhibitory, cytotoxic, and hemolytic activities [10].
Hemolysis can be induced by several protein toxins

from animals, plants, and microbes, particularly marine
animals [19]. Some of these venoms affect biological
Figure 3 Effects of cations (10 mM Ca2+, 10 mM Ba2+, 10 mM Mg2+, 1
secretions of Kaloula pulchra hainana. Each cation was incubated with e
secretions was added (n = 10), *p < 0.05.
membranes by inducing the formation of pores or channels
in natural and model bilayer lipid membranes [20-22].
Thus, hemolytic activity induced by protein toxins
has been used as a sensitive toxicological tool to
investigate the targeting and attachment of proteins to
cell membranes [15].
We used a series of PEGs (300, 400, 1000, 3400, and

6000 Da) with different hydrodynamic diameters to
determine their effects on erythrocyte hemolysis induced
by the skin secretions of K. pulchra hainana [15,23].
The small polymers PEG 300 did not affect hemolysis,
while PEG 400 only partially inhibited hemolysis.
However, hemolysis was significantly inhibited by treatment
with larger PEGs of 1000, 3400, and 6000 Da (Figure 2).
We deduced that these skin secretions had induced
the formation of transmembrane pores in erythrocyte
membranes. In contrast, small osmolytes, including
glucose, trehalose, lactose, methylmanopyranose, and
galactosamine, did not affect hemolysis (Table 1). Thus,
we hypothesize that the hydrophilic pores in erythrocyte
cell membranes induced by these skin secretions caused a
colloid osmotic burst that resulted in erythrocyte lysis.
The diameters of these pores were approximately
1.36-2.0 nm based on the hydrodynamic diameters of PEG
400 and 1000 of 1.36 nm and 2.0 nm, respectively [24].
In addition to pore-forming mechanisms, lipid peroxi-

dation of erythrocyte membranes plays an important role
in the hemolysis induced by hemolytic protein toxins,
resulting in cell membrane disorder [19,20]. The antioxi-
dant compounds GSH, cysteine, and ascorbic acid only
minimally reduced the hemolytic activity of these skin
secretions. From these results, we deduced that these skin
secretions induced erythrocyte lysis by inducing pore
formation in bilayer lipid membranes rather than causing
oxidative damage.
βγ-CAT, a protein purified from the skin secretions of

the frog Bombina maxima, has potent hemolytic activity
mM Cu2+, and 10 mM K+) on the hemolytic activity of skin
rythrocyte suspensions, following which 1.4 or 5.6 μg/mL of skin
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and induces the formation of membrane pores with
diameters of approximately 2.0 nm [12]. Antimicrobial
peptides from amphibian skin also exhibit hemolytic
activity. In that report, the antimicrobial activity of the
skin secretions was not detected for some gram-positive
bacteria and gram-negative bacteria, suggesting that
hemolysis was not caused by antimicrobial peptides.
Preincubating these skin secretions with trypsin or colla-
genase resulted in a significant loss of hemolytic activity
(unpublished observations). Proteins in K. pulchra hainana
skin secretions were analyzed by sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE).
Two major bands were identified with molecular weights
of approximately 28–60 kDa and 17–25 kDa (unpublished
observations). However, we have no data regarding
which proteins contributed to the hemolytic activity of
these skin secretions.
Cations, particularly Ca2+, affect the hemolytic activities

of sea anemone toxins, although different results are
obtained depending on the specimens and toxin structures
[25-27]. In our study, the hemolytic activity of skin
secretions was slightly affected by 10 mM Ca2+, whereas it
was significantly inhibited by 1 mM Cu2+. The chelating
agent EDTA at any tested concentration did not produce
any effects, suggesting that cations were not necessary for
the hemolytic activity of these skin secretions.

Conclusion
In this study, we analyzed the effects of osmotic protectants,
cations, and antioxidants on erythrocyte hemolysis induced
by the skin secretions from the frog K. pulchra hainana.
We observed that osmotic protectants of high molecular
mass inhibited this hemolytic activity. Cu2+ also signifi-
cantly inhibited the hemolytic activity. We deduced that
these skin secretions induced erythrocytes lysis by a
pore-forming mechanism in the bilayer lipid membrane.
This hypothesis needs to be explored in detail in
future investigations.
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