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Abstract

Arachnida is the largest class among the arthropods, constituting over 60,000 described species (spiders, mites,
ticks, scorpions, palpigrades, pseudoscorpions, solpugids and harvestmen). Many accidents are caused by
arachnids, especially spiders and scorpions, while some diseases can be transmitted by mites and ticks. These
animals are widely dispersed in urban centers due to the large availability of shelter and food, increasing the
incidence of accidents. Several protein and non-protein compounds present in the venom and saliva of these
animals are responsible for symptoms observed in envenoming, exhibiting neurotoxic, dermonecrotic and
hemorrhagic activities. The phylogenomic analysis from the complementary DNA of single-copy nuclear
protein-coding genes shows that these animals share some common protein families known as neurotoxins,
defensins, hyaluronidase, antimicrobial peptides, phospholipases and proteinases. This indicates that the
venoms from these animals may present components with functional and structural similarities. Therefore, we
described in this review the main components present in spider and scorpion venom as well as in tick saliva,
since they have similar components. These three arachnids are responsible for many accidents of medical
relevance in Brazil. Additionally, this study shows potential biotechnological applications of some components
with important biological activities, which may motivate the conducting of further research studies on their
action mechanisms.
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Background
Envenomings are considered a neglected disease by the
World Health Organization [1] and constitute a public
health problem, especially in tropical countries. The ani-
mals responsible for such accidents possess an apparatus
associated with a venom gland that is able to produce
a mixture rich in toxic and nontoxic components [2].
Among the most studied arthropod venoms are those
from scorpions, spiders and ticks, belonging to the
phylum Arthropoda, class Arachnida, which correspond to
the purpose of this review. They are widely dispersed in
urban centers due to the large availability of shelter and
food, which facilitates their reproduction and consequently
increases the number of accidents [3, 4]. Therefore, this

review will focus on the main Brazilian venomous animals
of the Arachnida class belonging to Scorpionida, Araneae,
Ixodidae orders as well as on the aspects related to enve-
noming caused by these animals and their venom/saliva
composition, highlighting the components of scientific
and medical interest.
The phylogenomic analysis of the nuclear protein-coding

sequences from arthropod species suggests a common
origin in the venom systems of scorpions, spiders and
ticks [5, 6]. Specifically, catabolite activator protein (CAP),
defensins, hyaluronidase, Kunitz-like peptides (serine pro-
teinase inhibitor), neurotoxins, lectins and phospholipase
are examples of compounds shared by these animals (Fig. 1).
Some compounds such as alanine-valine-isoleucine-threo-
nine protein (AVIT protein) and sphingomyelinase have
been identified in spiders and ticks. Cystatins, lipocalins
and peptidase S1 are found only in ticks [5].
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In this context, the study of the structural similarity
among these compounds/toxins identified in the venom/
saliva of these animals may contribute to a better under-
standing of the action mechanism involved in envenoming
besides providing information about molecules with great
biotechnological potential.

Review
Scorpion venoms
Scorpion envenoming is considered a public health prob-
lem, especially in tropical countries [7]. Annually, more
than one million cases of scorpion envenomation are
reported worldwide with a fatality risk of around 3 %
[8]. According to the data from the Brazilian Ministry
of Health, 57,933 accidents were recorded in Brazil in
2011, of which 91 cases resulted in death [9].

The scorpion venom apparatus consists of a gland
connected to a telson sting which is located on the last
segment of the post-abdomen of the animal (Fig. 2). This
is an apparatus of great importance for their survival,
assisting in feeding and self-defense of the scorpion. The
telson has a vesicle that contains a pair of glands respon-
sible for the production and storage of the venom [2].
A scorpion sting is characterized by intense pain and

systemic symptoms that usually develop rapidly [10]. Ac-
cording to clinical manifestations, scorpion envenomings
are classified as mild, moderate or severe. The general
initial response to a scorpion sting is immediate local
burning pain, which may be severe. General symptoms
may occur soon after the sting, but may be delayed for
several hours. Therefore, vital functions of patients with
systemic manifestations should be observed continuously,
while seeking early treatment of the complications [11].
So far, approximately 2,000 species of scorpions have

been described, distributed worldwide. These arach-
nids are classified into seven families: Scorpionidae,
Diplocentridae, Chactidae, Vaejovidae, Bothriuridae,
Chaerilidae and Buthidae. The most dangerous species
belong to the family Buthidae, which comprises more
than 500 species. In Brazil the scorpions with the
highest medical and scientific interest belong to the
genus Tityus [2, 12–15].
There are more than ten different Tityus species in

Brazil, among which Tityus stigmurus, Tityus bahiensis
and Tityus serrulatus are primarily responsible for hu-
man envenoming. T. serrulatus is considered the most
dangerous species in the country, responsible for the
highest number of envenoming accidents [16, 17].

Fig. 1 Venn diagram highlighting the protein families presented in
tick saliva and scorpion/spider venoms. Catabolite activator protein
(CAP), defensins, hyaluronidase, Kunitz-like peptides (serine proteinase
inhibitor), neurotoxins, lectins and phospholipase are some of the
compounds shared among these arthropods

Fig. 2 Photo of a scorpion and schematic representation of scorpions’ telson. Morphology of the inoculum apparatus of scorpion venom located
on the last segment of the post-abdomen of the animal. The telson comprises a pair of glands responsible for the production and storage of the
venom used for feeding and self-defense of the scorpion
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Biochemical characteristics of the venom from Tityus
Scorpion venoms are a complex mixture of substances
that include: inorganic salts, free amino acids, heterocyclic
components, peptides and proteins, mainly enzymes that
are used by the scorpions for self-defense and the capture
of prey [18]. A broad range of bioactive compounds of
scorpion venoms have already been purified and char-
acterized. It is estimated that the number of different
components present in these venoms is approximately
100,000, but only 1 % of these molecules have been iso-
lated and characterized [19]. The advent of recombin-
ant DNA technology, such as transcriptome analysis,
allowed the identification of new components; however,
some of them have not yet been directly purified from
the venom.
Venoms varies compositionally from genus to genus and

species to species and may differ in potency, probably due
to changes in the proportion of their toxins, associated with
genetic and environmental variations, such as diet and cli-
mate [20–23]. Studies have shown that T. serrulatus venom
is two to three times more toxic than that of T. bahiensis,
which explains the various studies that aimed to isolate and
characterize their toxins [2]. Furthermore, such studies
found variability in venom lethality among T. serrulatus
specimens, which suggests that neurotoxins, such as α-type
neurotoxin, must be the major lethal component in the
whole venom [24].
The major components of scorpion venom are neuro-

toxins, which act on ion channels of excitable cells [25].
The venom compounds may interact with each other to
modulate the function of ion channels, which is usually
responsible for the known symptoms of envenoming.
Scorpion neurotoxins present a tightly tridimensional-
shaped backbone stabilized by three or four disulfide
bridges. This property avoids their in-vivo degradation,
thereby increasing their interaction time with ion channels
and their efficacy [18].
Four different families of neurotoxins are usually found

in scorpion venom: peptides that modulate sodium-,
potassium-, chloride- or calcium-gated channels [12]. The
most studied families of venom neurotoxins from Tityus
species act on sodium and potassium channels. The poorly
known toxins specific for chloride and calcium channels
present variable amino acid lengths [26]. The neurotoxins
present a highly conserved essential three-dimensional
structure comprising an α-helix and three- or four-
stranded anti-parallel β-sheets connected by two to
four disulfide bonds [18, 27, 28].
The scorpion toxins that affect mammalian voltage-gated

Na+ channels (Nav) are classified as: α-neurotoxins (α-
NaScTx) and β-neurotoxins (β-NaScTx). The α-NaScTx
interacts with channel receptor site 3 located in the
S3–S4 extracellular loop in domain IV and in the S5–
S6 extracellular linker domain I of Nav channels [2, 18].

The α-NaScTx retards the mechanism of Nav inactivation
and prolongs the repolarization phase of the membrane
action potential [2]. The α-NaScTx can be subdivided into
the following three main groups: (1) classical α-toxins,
which are highly active only in mammalian Nav channels
and present poor toxicity against insects; (2) anti-insect α-
NaScTXs, which are highly active only on insect Nav
channels; and (3) α-like toxins, active on both insect and
mammalian Nav channels [18]. As shown in Table 1,
toxins such as Ts3 isolated from T. serrulatus, TbTx5 from
T. bahiensis and Tst3 from T. stigmurus are highly con-
served between the species sharing a high percentage of
identity [29–31]. Those toxins also show high similarity
with Ts5 of T. serrulatus and Tb3 of T. bahiensis. The Ts3
relaxes the human corpus cavernosum in vitro through
the release of NO from nitrergic nerves and the elucida-
tion of its action mechanism would be useful for the de-
velopment of new therapeutic strategies to treat priapism
after scorpion envenomation. Additionally, this is a mol-
ecule that can be used as a model for the development of
a new drug to treat erectile dysfunction [32].
Another class of toxins that affect Nav channels is the

β-neurotoxins (β-NaScTx), which bind to receptor site 4
in the extracellular loops that connect transmembrane
segments S3 and S4 and the S1 and S2 segments in domain
II [2, 18]. Thus, this class alters the voltage-dependence of
channel activation to more negative potentials to cause an
increased tendency to trigger the spontaneous and the
repetitive potentials of the membrane [2]. Similar to α-
NaScTx, the β-neurotoxins are subdivided into four
groups according to their pharmacological selectivity
for insect and mammalian Nav channels: (1) βm, active
on mammalian Nav channels; (2) βi, selectively active
on insect Nav channels; (3) β-like, for toxins without
preference between mammalian and insect Nav chan-
nels and (4) βα, for those that presents a primary structure
of β-toxins, but with a functional α-effect [14]. The
toxin Ts1, a β-neurotoxin with action on Nav channels,
is the most abundant toxin in T. serrulatus venom,
whose activities include inducing macrophage activation
in vitro [33, 34].
The neurotoxins that act on voltage-gated K+ channels

(Kv) can be classified into α, β, γ and κ [35, 36]. There
are two main types of structural motifs observed in these
peptide classes: (1) the common motif comprised of one
or two short α-helices connected to a triple-stranded
antiparallel β-sheet stabilized by three or four disulfide
bonds, denominated CS αβ and (2) the α-helix-loop-
helix (CS αα) fold consisting of two short α-helices con-
nected by a β-turn; only the kappa toxins adopt this fold
[18, 37–40]. The α-neurotoxins (α-KTx) block the pore
binding to the external vestibule of the channel and
block the ionic conductivity by occlusion of the physical
pore without affecting the kinetics of channel activation

Cordeiro et al. Journal of Venomous Animals and Toxins including Tropical Diseases  (2015) 21:24 Page 3 of 14



[41]. Ts6 and Ts7 from T. serrulatus, Tst26 from T.
stigmurus, Tt28 from T. trivittatus and TdK1 from T.
discrepans are examples of α-neurotoxins that act on
Kv channels [35, 42–45].
In addition to α-KTxs, the venoms of the Buthidae,

Caraboctonidae and Scorpioninae families also contain
β-neurotoxins (β-KTxs) [35]. According to the identity
of the sequences, these toxins may be divided into three
classes. Class 1 containing the toxins TsTX-Kβ-related
peptides, such as TsTx-Kβ, TtrβKTx, TdiβKTx, TstβKTx,
Tco 42.14 from T. serrulatus, T. trivittatus, T. discrepans,
T. stigmurus and T. costatus, respectively. The only
peptide characterized to any extent is TsTx-Kβ from T.
serrulatus, which is a blocker of Kv1.1 channel with
IC50 values of 96 nM [46]. Class 2 consisting of peptides
homologous to BmTXKβ from Buthus martensii which
showed an inhibition of the transient outward K+ current
(Ito) of rabbit atrial myocytes; some examples of class 2
peptides are TdiKIK, TtrKIK, TcoKIK and TstKMK [18].
Class 3 is formed by the Scorpine-like peptides, also
known as “orphan” peptides. They possess two structural
and functional domains: an N-terminal α-helix (with
cytolytic and/or anti-microbial activity such as insect
defensins) and a tightly folded C-terminal region with a
CS αβ motif, displaying Kv channel blocking activity.
The scorpine homologs exhibit strong antimicrobial effects
as well as cytolytic activity against eukaryotic cells and
possible antimalarical activity [18, 46, 47].

The other subclasses of neurotoxins that act on Kv
channels, such as γ and κ, are less studied. However the
γ-KTxs neurotoxins were described as mainly targeting
hERG channels and were found in scorpions of the
genus Centruroides, Mesobuthus and Buthus [18, 36]. The
κ-KTxs neurotoxins show an interaction with voltage-
gated Kv channels similar to α-KTx toxins, presenting the
lysine and aromatic/hydrophobic residue (functional dyad)
that interact with the channel [18].
The diversity of toxins that target Kv channels with

high affinity and selectivity provides a large number of
molecular structures that can be considered for the
development of therapeutic drugs for diseases such as
cancer and autoimmune diseases, in which there is an
overexpression of these channels [48]. For example,
the HERG channels are associated with cell cycle and
proliferation of several cancers; therefore, the use of
HERG-specific blockers could inhibit the proliferation
of tumor cells [18].
The scorpion venoms are composed of other peptides

and proteins such as hyaluronidases, antimicrobial peptides,
phospholipases, allergens, hypotensins and also proteinases,
such as serine proteinases and metalloproteinases, among
others. However, some of these molecules were not isolated
from the scorpion venoms and were only identified in
the venom gland transcriptome.
In addition to the neurotoxic effects induced by toxins

acting on ion channels, a wide variety of actions of the

Table 1 Examples of compounds from Tityus scorpion venoms

Compounds Examples Species Molecular Mass
(kDa)

Action Mechanism References

Neurotoxins Ts3, Ts5 Tityus serrulatus ~6.0–7.0 Action on Na+ channels 29–32

TbTx5, Tb3 Tityus bahiensis

Tst3 Tityus stigmurus

Ts1 Tityus serrulatus 6890.9 33–34

Ts6, Ts7 Tityus serrulatus ~6.0–7.0 Action on K+ channels 35–40

Tst26 Tityus stigmurus

Tt28 Tityus trivittatus

TdK1 Tityus discrepans

Hypotensive agent Hypotensin Tityus serrulatus 2.75 Agonist of the B(2) receptor 41

Antimicrobial
peptides

TsAP1, TsAP2 Tityus serrulatus ~8.4 Unclear 42

Proteinases Metalloproteinase Tityus serrulatus ~25.0 Lysis of the cell basement membrane 43–46

Serine proteinasesa Tityus serrulatus Tityus
bahiensis

– Action on coagulation factors 47

Enzymes Phospholipaseb Tityus serrulatus Tityus
stigmurus

– Hydrolysis of membrane
phospholipids

48–49

Hyaluronidase Tityus sp. ~50.0 Catalyzes the hydrolysis of hyaluronan
from the extracellular matrix

50

aIdentified in the venom, but not purified
bCompound found only in the transcriptome
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venom components can be observed such as hypotensive
and antimicrobial effects induced by TsHpt-I and scor-
pine, respectively. TsHpt-I, isolated from T. serrulatus
venom, acts as an agonist of the B(2) receptor and does
not inhibit angiotensin-converting enzyme [49]. As de-
scribed above, the Tityus venom possesses a peptide
called scorpine which presents an antimicrobial and
antimalarial activity [47]. Recently, Guo et al. [50] identi-
fied two others antimicrobial peptides, TsAP1 and TsAP2,
with broad spectrum antimicrobial and anticancer ac-
tivities. The antimicrobial peptides are cationic and
amphipathic, mostly within 50 amino acid residues,
were gathered into different groups and their action
mechanisms remain unclear [12].
Although the presence of phospholipase was reported

in the transcriptome of T. serrulatus and T. stigmurus,
venoms of T. serrulatus, T. bahiensis and T. stigmurus
exhibit significant proteolytic but no phospholipase
activity [51–53]. The venom of these scorpions also
showed metalloproteinase activity; however, this enzyme
was obtained only from T. serrulatus venom [51, 54–56].
Furthermore, enzymes that present gelatinolytic activity,
such as serine proteinases, were detected in T. serrulatus
and T. bahiensis venoms, but these toxins have not been
isolated yet [57].
Hyaluronidase, another important protein present in

scorpion venom, is considered a “spreading factor” by fa-
voring the absorption and spread of venom through the
tissues of the victim, contributing to local or systemic
envenoming [58]. Animals injected with Ts1, the major
toxin from T. serrulatus, and hyaluronidase achieved sig-
nificantly higher serum levels of creatine kinase (CK),
lactate dehydrogenase (LD) and aspartate aminotransfer-
ase (AST) in a shorter time than those injected with only
Ts1 (without hyaluronidase), confirming the characteris-
tic of the “spreading factor” of the hyaluronidase. The
animals, which received only hyaluronidase, showed CK,
LD and AST levels similar to those of the control group,
indicating no intrinsic toxic effect of hyaluronidase [59].
The advent of transcriptome analysis of the scorpion

venom gland allowed the determination of several com-
ponents that had not been purified from the venom of
these animals. Transcriptome of several scorpions has
been performed, and among the genus Tityus the transcrip-
tomes of T. stigmurus, T. discrepans, T. costatus Karsch, T.
pachyurus, T. obscurus, T. bahiensis and T. serrulatus have
been reported [52, 53, 60–62]. These analyses found
transcripts of novel proteins such as phospholipases,
metalloproteinases, allergens, proteinases, antimicrobial
peptides and anionic peptides. However, the possibility
that those transcripts had undergone microRNA-mediated
degradation during the processing period may explain
why some toxins were found only in the transcriptome
and not in the venom [53].

One of the major goals of the identification and
characterization of animal toxins is the possibility of
obtaining new therapeutic drugs. A famous example
about scorpion toxins with biotechnological application
is the chlorotoxin isolated from venom of the Israeli
scorpion Leiurus quinquestriatus, which was initially devel-
oped for the diagnosis and treatment of glioma. Further-
more, this toxin was discovered to be capable of labeling
specific cancer cells [63]. Although the biomarker respon-
sible for the binding is still under discussion, it has been
preliminarily identified as annexin 2A. Recently, the ex-
tremely stable iodinated analogue of this toxin—TM601,
which presents no immunogenicity and produces no tox-
icity in humans—has successfully completed clinical phase
II in the treatment of recurrent glioma and was approved
by the Food and Drug Administration (FDA) [63–65].
Thus, given the wealth of components present in scor-

pion venom, it is concluded that the study of these toxins
is not only a potential source of new drugs, but also a
source of tools in the elucidation of the physiological sys-
tems and envenoming presented by these animals [66].

Spider venoms
Spiders possess four pairs of paws and an external skel-
eton composed of chitin (Fig. 3). The exclusive feature
of these animals is the presence of chelicerae associated
with the venom gland, except for rare species. The spiders
use their venom primarily to paralyze or kill their prey,
sometimes for self-defense, which may cause occasional
accidents [67].
The World Health Organization (WHO) establishes

that only four spider genera contain species capable of
causing medically important accidents in humans: Loxos-
celes, Phoneutria, Latrodectus and Atrax [68]. In Brazil,
Loxosceles, Phoneutria and Latrodectus are the most rele-
vant genera and account for a large number of accidents
in this country [69].
Spider venom contains a complex mixture of distinct

compounds [70]. The main components are neurotoxins,
proteins, peptides, enzymes, free amino acids and inor-
ganic salts. Indeed, many toxins isolated from spider
venom have been studied in relation to their role in ion
channels [71] (Table 2).
These cocktails of substances that act by different pharma-

cological mechanisms have been extensively researched
seeking to develop new drugs and biotechnological
products [72].
The distinct characteristics of venom from each species

determine its effect on humans in the event of an accident.
Venom from the genus Loxosceles, or brown spider, has
constituents such as hyaluronidases, metalloproteinases,
phospholipases and other enzymes that provide a local ef-
fect with deep lesions, in contrast to the genus Phoneutria,
whose venom produces neurotoxic activity [73]. The

Cordeiro et al. Journal of Venomous Animals and Toxins including Tropical Diseases  (2015) 21:24 Page 5 of 14



Latrodectus genus, or black widow spider, has neuro-
toxic venom components that act on presynaptic nerves
of vertebrates [74].
In this review, we focused only on three genera re-

sponsible for the highest amount of medically important
accidents in Brazil, Loxosceles, Phoneutria and Latrodectus,
their principal components and respective contributions in
physio-pharmacological studies.

Biochemical characteristics of the venom from Phoneutria
Spiders of the Phoneutria genus are popularly known as
“armed” due to the attack position they assume in a situ-
ation of danger. When these spiders face an opponent, they
raise their front legs and lean on the back legs, presenting
aggressive behavior [68].
The venom of this genus causes immediate and intense

local pain radiating in the affected limb, but can progress
into complications, especially in children and the elderly,
such as salivation, sudoresis, hypertension, priapism and
even death. These spiders are found in banana plants,
palm trees and bromeliads. They are habitually nocturnal

and responsible for most accident cases registered in
Brazil. Such accidents occur mostly in the south and
southeast regions of the country [75, 76].
Experimental studies have shown that the venom causes

an activation of voltage-dependent sodium channels, and
a blockade of voltage-dependent potassium and calcium
channels in muscle fibers and sensory nerve endings in
both the motor and autonomic nervous systems. As a con-
sequence, there is a release of neurotransmitters, especially
acetylcholine and catecholamines, which explains the fol-
lowing symptoms: severe pain at the bite site, sweating,
agitation, salivation and, in severe cases, arrhythmias and
priapism [75, 77, 78].
This venom is a cocktail consisting of peptides, free

amino acids, histamine, serotonin and serine proteinases
[79, 80]. Furthermore, the Phoneutria nigriventer venom
is largely composed of neurotoxins.
The Phoneutria neurotoxins are similar to those from

scorpion venoms. They present different amino acid se-
quences, but are rich in cysteines forming three or four
disulfide bonds, which are responsible for peptide stability.

Fig. 3 Photo of a spider and schematic representation of a spider’s chelicerae. Chelicerae are associated with venom glands, which are
responsible for the production and storage of venom. The chelicerae are also used to trap and kill the prey

Table 2 Examples of compounds from Brazilian spider venoms

Compounds Examples Species Molecular Mass
(kDa)

Action Mechanism References

Neurotoxins PnTx1,PnTx2, PnTx3 Phoneutria
nigriventer

~6.0–9.0 Act on ion channels 72

PnTx4 Phoneutria
nigriventer

5.17 Inhibit reversible NMDA receptors in insects 73

α-latrotoxin Latrodectus sp. ~130 Influx of Ca2+ on presynaptic nerve endings 74

Enzymes Phospholipase D Loxosceles sp. ~31.0–32.0 Hydrolysis of membrane phospholipids 75

(Sphingomyelinase)

Hyaluronidase Loxosceles sp. – Catalyzes the hydrolysis of hyaluronan from the extracellular
matrix

76

Proteinases Metalloproteinase Loxosceles sp. ~29.0 Lysis of the cell basement membrane 77

Serinoproteinases Loxosceles sp. ~85–95.0 Action on coagulation factors 78
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In this genus, for example, there are three neurotoxins
lethal to mice, denominated PnTx1, PnTx2 and PnTx3.
The fraction PnTx4 modifies the neuromuscular re-
sponse in insects [75, 79].
The PnTx2 fraction is composed of nine different pep-

tides, which are mainly responsible for the overall effect
of the venom. Of these nine peptides, the Tx2-5 and
Tx2-6 are active in smooth muscle relaxation of the cor-
pus cavernosum in rats and rabbits, causing erection
[81–83]. This fact, along with the discovery that some of
these fractions have insecticidal activity, has drawn the
attention of researchers to the study and characterization
of the Phoneutria venom.
In addition, PnTx4 was able to inhibit glutamate uptake

by rat synaptosomes. The toxin Tx4(5–5), a polypeptide
composed of 47 amino acid, displays a potent insecticidal
activity. This toxin reversibly inhibited the N-methyl-D-
aspartate (NMDA) subtype receptor [84].
A comparison of the proteomes of P. nigriventer, P.

reidyi and P. keyserlingi revealed a large number of
neurotoxic peptides that act on ion channels, which
cause paralysis and death when injected in mice, as well as
proteinases and peptides with insecticidal activity and
non-toxic peptides [85].
Spiders contain innumerous peptides with interesting

actions but with a low amount in the venom; for this rea-
son, these components have been synthesized or cloned
and expressed in bacteria or yeast. An example is a recom-
binant of PnTx-1 and PnTx3-4 from Phoneutria nigriventer
venom. These studies open new perspectives in drug
development and research [86, 87].

Biochemical characteristics of the venom from Loxosceles
The different species of the genus Loxosceles are distributed
globally. They are found in South America, North America,
Europe, Africa, Oceania and Asia. They are popularly
known as brown spiders and comprise more than 30
species in South America. In Brazil, the highest incidence
of these spiders is in the southern and southeastern regions,
where the L. gaucho, L. laeta and L. intermedia species are
found [73, 88–90].
A brown spider bite can cause cutaneous or systemic

(or both in some cases) manifestations in the victims. At
least three actions of the loxoscelic venom are described:
proteolysis with dermonecrosis at the bite site with a
gravitational lesion; hemolytic action with intravascular
hemolysis, which may lead to acute renal failure, and
coagulant activity with thrombocytopenia, hypofibrino-
genemia, prolongation of clotting time and disseminated
intravascular coagulation [91, 92].
Brown spider venom is a mixture of toxins composed

of proteins and also low-molecular-weight constituents.
Numerous toxins have been identified and characterized

biochemically. Among these are hydrolases, hyaluronidase,
lipases, metallo—and serine proteinases, peptidases, colla-
genases, alkaline phosphatase and phospholipase or sphin-
gomyelinase D [93–96].
The sphingomyelinases are phospholipases D considered

the major components of the venom and are primarily
responsible for dermonecrotic lesions. Furthermore, these
enzymes are related to reactions involving components of
the complement system, migration of polymorphonuclear
leukocytes, platelets aggregation and inflammatory re-
sponse [97].
Although sphingomyelinase D plays a key role in the

Loxosceles envenoming and is the major component,
studies have shown that the clinical manifestations are the
result of an interaction between several other components
in the venom [98].
Studies of L. gaucho, L. deserta and L. reclusa venom

demonstrated the presence of metalloproteinases with
gelatinolytic, caseinolytic and fibrinogenolytic activity.
These enzymes appear to be involved with the signs and
symptoms of envenoming. Some of these metallopro-
teinases present astacin-like activity. The astacins are
zinc-dependent proteinases with such diverse functions
as hydrolysis, digestion of peptides and degradation of
extracellular matrix. These astacin-like metalloproteinases
have been identified in the venom of L. gaucho and L.
laeta [93, 95, 99, 100].
In addition, two serine proteinases from the same spe-

cies of Loxosceles have been reported to hydrolyze gel-
atin [100, 101]. The authors concluded that the activity
of serine proteinases complements other fibrinogenolytic
proteinases in disseminated intravascular coagulation,
triggered by loxoscelic venom [95, 101]. Furthermore,
another enzyme that plays a key role in envenoming is
hyaluronidase, which is responsible for the gravitational
effect on the skin that spreads the venom [73, 95].
Toxins from Loxosceles venom have been cloned and

expressed using cDNA. An example of recombinant pro-
tein generated by loxoscelic venom is Loxosceles intermedia
recombinant dermonecrotic toxin (LiRecDT), which has
properties similar to the L. intermedia venom, with respect
to inflammatory and dermonecrotic activity, and stimulates
nephrotoxicity in rats [73]. Furthermore, many sphingo-
myelinases have been cloned from the Loxosceles cDNA
glands and expressed to obtain larger amounts of this en-
zyme and allow study of the structure and function of these
toxins [97, 98].

Biochemical characteristics of the venom from Latrodectus
genus
Worldwide, more than 40 species of the genus Latrodectus
are found in tropical and subtropical regions. In Brazil,
only three species occur: L. geometricus, L. mactans and L.
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curacaviensis, which inhabit mainly the northeast region
[102, 103]. However, the presence of another specie, L.
mirabilis, was recently described in the southern Brazilian
state of Rio Grande do Sul [104].
The bites of these spiders, known as black widows,

provoke clinical manifestations that include pain, hyperten-
sion, spasms, “facies latrodectismica”, vomiting, abdominal
pain and muscle cramping. In severe cases, the patient may
present myocardial infarction and compartment syndrome
[102, 105].
The Latrodecuts venom contains a cocktail of substances,

but its major component is α-latrotoxin (α-LTX), a neuro-
toxin that acts selectively on presynaptic nerve endings and
provokes a discharge of neurotransmitters. This toxin is a
protein with high molecular mass (about 130 kDa of ma-
ture toxin), but shows no enzymatic activity [74, 106–110].
The effects of the LTX seem to be related to the for-

mation of pores in the membrane. LTX binds to specific
receptors (named neurexin and latrophilin) which can
facilitate the insertion of this toxin and subsequent in-
flux of Ca2+ [106, 111, 112].
LTXs have targeted insects (latroinsectotoxins), crusta-

ceans (latrocrustatoxin) and mammals. Many of these
latrotoxins have been cloned and studied in relation to
their structure, maturation and activity. Moreover, these
toxins can help to elucidate the mechanisms of neuro-
transmitter release and to identify neuronal cell-surface
receptors [113].

Ticks
The known tickborne diseases are of great interest in the
field of public health. Ticks are rarely considered venomous
but some studies provide evidence to the contrary
[5, 114–116]. Ticks, as vectors of disease transmission to
humans, rank just behind mosquitoes as the most import-
ant arthropod transmitters of pathogens to several animal
species [117]. Although these diseases have focal features
on some regions, they have been recognized worldwide.
Virus and bacteria are the main causes of the diseases
transmitted by ticks. Among the virus-associated
diseases, we can cite encephalitis, Crimean-Congo
hemorrhagic fever, Omsk hemorrhagic fever, Colorado
tick fever, Powassan encephalitis, Langat encephalitis and
louping ill encephalitis. Some tickborne diseases associ-
ated with bacteria have already been described including
tularemia, ehrlichiosis (monocytic and granulocity), rick-
ettsiosis (spotted fever), Lyme borreliosis (Lyme disease)
as well an infection caused by a protozoan, babesiosis
[118–123].
Ticks are cosmopolitan and associated with numerous dis-

eases besides being the most important group of ectopara-
sites of wild animals [118, 124]. Today, approximately 899
tick species have been described and distributed among

three families: Ixodidae, Argasidae and Nuttalliellidae
[118, 124–126]. There are several genera of ticks, most
importantly Ixodes, Dermacentor, Boophilus, Rhipicephalus,
Haemaphysalis, Hyalomma and Amblyomma, which
belong to the family Ixodidae [126].
In Brazil, studies have reported the existence of 55

species, divided into six genera of the family Ixodidae
(Ixodes, Amblyomma, Haemaphysalis, Anocentor, Rhipice-
phalus and Boophilus) and four genera of the Argasidae
family (Argas, Ornithodoros, Antricola and Otobius). The
Ixodidae family includes the most of the species of medical
and veterinary importance in Brazil, where the genus
Amblyomma (the largest genus containing 33 species)
is the most important in the medical field. The species
Amblyomma cajennense, A. aureolatum and A. cooperi
stand out in relation to the transmission of spotted
fever [127, 128].
Morphologically, ticks present two fused parts, namely

the capitulum (or gnathosoma) that contains the head
and mouthparts, and the idiosoma that contains the legs,
digestive tract and reproductive organs (Fig. 4). The ca-
pitulum consists of three specialized structures: palpus,
chelicerae and a hypostome. Nymph and adult ticks have
eight legs whereas larval ticks possess six [118, 124, 129].
Several diseases can be transmitted during feeding by

ticks, which are obligate hematophagous organisms. Der-
mal and epidermal damage (rupture of local blood vessels)
are consequences of the insertion of the tick hypostome
[125–127]. In contrast to the toxins of other arthropods
such as scorpions and spiders, which utilize their toxins
for protection as well as predation, the advantages of the
tick toxins are still unclear and require additional research
[130, 131]. We will discuss below the main compounds
found in saliva from Brazilian families of ticks.

Biochemical characteristics of tick saliva
Studies performed to evaluate the pharmacological com-
plexity presented by hematophagous arthropods have
shown that their saliva contains at least one anticlotting,
one vasodilatory and one anti-platelet substance [132].
Among tick saliva components are descriptions of enzymes,
enzyme inhibitors, host protein homologues, amine-
binding lipocalins, immunoglobulin-binding proteins,
receptor agonist/antagonist, calcium-binding components,
cement cytokine components, cytokine expression modu-
lators, non-proteinaceous bioactive components and other
components related to cardiotoxic and neurotoxic factors
[118, 119, 127, 130, 132, 133].
The Amblyomma cajennense is the most studied species

in Brazil. After constructing a cDNA library on this tick, a
serine protease Kunitz-type inhibitor was designed. This
new inhibitor known as Amblyomin-X was able to decrease
the number of metastatic events and the tumor mass in a
B16F10 murine melanoma model by apoptosis induction
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[134–136]. Moreover, the Amblyomin-X was able to inhibit
the factor Xa from coagulation cascade [136]. Although this
species is the most studied in Brazil, most studies have
focused on characterization and therapeutic application
of Amblyomin-X [134–136].
Saliva-enzyme inhibitors have great biotechnological

potential in the medical field. Ornithodorin (Ornitho-
doros moubata) and savignin (Ornithodoros savignyi) are
examples of potent thrombin inhibitors from tick saliva
[137, 138]. A novel tissue factor pathway inhibitor called
ixolaris was found through the sialotranscriptome ana-
lysis of I. scapularis [139, 140]. Among the inhibitors of
factor Xa, Salp14 is the main prototype identified in I.
scapularis saliva, whereas tick anticoagulant peptide (TAP)
is the main inhibitor of factor Xa from Ornithodoros
moubata [141–144]. Variegin isolated from Amblyomma
variegatum saliva is one of the smallest thrombin inhib-
itors (3.6 kDa) identified in nature. This inhibitor binds
to thrombin with strong affinity and is considered an
excellent model for the development of new inhibitors
of this class [145].
In contrast to the scorpions, few neurotoxins were

found in tick saliva to date. Some studies described

neurotoxins such as HT-1 (holocyclotoxins) in the
Ixodes holocyclus tick saliva and another still unnamed
one in the Rhipicephalus evertsi evertsi tick saliva
[127, 146, 147].
The gene coding of the HT-1 neurotoxin in the saliva

of the tick I. holocyclus showed high homology with the
gene coding scorpion neurotoxin [114, 146]. The study
of this toxin may help elucidate the potentially fatal tick
paralysis caused by this arthropod [127, 146–157].
The presence of the phospholipase A2 (PLA2) was ob-

served in saliva from Amblyomma americanum. This en-
zyme is secreted in the tick-host interface, and probably
plays an important role during prolonged tick feeding. The
PLA2 does not contribute to the anticoagulant activities
but is associated with hemolytic activity observed during
feeding [158, 159].
Some lectins were characterized in the ticks O. mou-

bata (Dorin M and OMFREP) and I. ricinus (ixoderin
A and ixoderin B). Lectins play roles in the innate im-
munity of ticks whereas that of R. microplus induces
immunosuppression in mice [5, 160–162].
An antimicrobial protein was identified in the hemolymph

of the tick Amblyomma hebraeum and denominated

Fig. 4 Photo of a tick and schematic representation of the capitulum. Dorsal and ventral morphology of the mouthpart of Ixodidae family ticks.
On the dorsum it is possible to observe the chelicerae while the venter displays the hypostome. The palpus is observable on both sides (dorsum
and venter). The hypostome is responsible for the dermal and epidermal damage (rupture of local blood vessels) during the tick’s feeding
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hebraein (11 kDa). Native hebraein and its recombinant
form, named hebraeinsin, revealed antimicrobial
activities against the gram-positive and gram-negative bac-
teria (S. aureus and E. coli, respectively) and the fungus
Candida glabrata [163]. In another study, two non-
cationic defensin-like antimicrobial peptides, designated
Amblyomma defensin peptide 1 and Amblyomma defen-
sin peptide 2, were found in the Amblyomma hebraeum
tick saliva [164]. The Amblyomma defensin peptide 2
showed antimicrobial activity against E. coli and S. aureus.
Ixosin, another antimicrobial peptide, was isolated from
salivary glands of the tick Ixodes sinensis. This peptide has
23 amino acids (without cysteine) and showed antimicro-
bial activity against E. coli, S. aureus and C. albicans [165].
Ixosin-B was purified and cloned from salivary glands of
the Ixodes sinensis and showed antimicrobial activity
against E. coli, S. aureus and C. albicans [166]. ISAMP, an
antimicrobial peptide from Ixodes scapularis saliva, has a
molecular weight of 5.3 kDa and exhibited antimicrobial
activity against gram-negative and gram-positive bacteria.
Additionally, it showed insignificant hemolytic action
on rabbit red blood cells, suggesting that it is a safe
antimicrobial peptide for possible use on mammals [167].
Table 3 summarizes the major components found in the
tick saliva.
After the identification of molecules with important

pharmacological actions from natural sources, another
possible alternative to obtain peptides is chemical
synthesis. Zheng et al. [168] synthetized a defensin-
like antimicrobial peptide obtained from a cDNA li-
brary of the male accessory glands of Haemaphysalis
longicornis. This peptide, based on the predicted mature
portion of HlMS-defensin, was tested against a variety
of gram-positive and gram-negative bacteria and fungi,

showing antimicrobial activity against all standard
strains [168].
Defensins are small proteins present in vertebrates, in-

vertebrates and plants and are responsible for their
defense against several microorganisms. Two isoforms of
the defensin gene, denominated def1 and def2, were
found in saliva of Ixodes ricinus ticks; synthetic peptides
from these defensins were tested against bacteria and
yeast [169]. These defensins showed an antimicrobial
activity against gram-positive bacteria, but were not ef-
fective against gram-negative ones or yeast [169]. Struc-
turally, these defensins contain six cysteine residues
and present as their main action mechanism cell mem-
brane lysis by a formation of channels [169]. With the
increasing number of microorganisms resistant to con-
ventional antibiotics, the saliva of ticks is becoming an
important source for the discovery of new compounds
to treat several diseases.

Conclusions
In this review we have highlighted the main biologically
active components present in scorpion and spider venoms,
as well as tick saliva, which are of great importance in
the medical field in Brazil. We have also shown that
the study of arachnid venoms and saliva provides numerous
compounds with great biotechnological potential. The bio-
chemical characterization of these compounds, combined
with the advent of molecular biology techniques, enables
the development of new biotechnological products with
relevant applications. Additionally, this study allows the un-
derstanding of the physiological processes involved in the
envenomings and diseases transmitted by ticks, thereby fa-
cilitating the obtainment of a more effective therapy.

Table 3 Examples of compounds from tick saliva

Compounds Examples Species Molecular Mass
(kDa)a

Mechanism of Action References

Enzyme
Inhibitors

Amblyomin-Xb Amblyomma
cajennense

15.0 Factor Xa Inhibition/induction of apoptosis in
tumor cells

134–136

Savignin Ornithodoros savignyi 14.1 Thrombin inhibitor 137–138

Ixolaris Ixodes scapularis 18.4 Tissue factor pathway inhibitor 139–140

Variegin Amblyomma
variegatum

3.6 Thrombin inhibitor 145

Neurotoxin HT-1
(Holocyclotoxins)

Ixodes holocyclus 7.8 Unclear 114, 146–
148

Enzyme Phospholipase A2 Amblyomma
americanum

55.7 ± 1.3 Hydrolysis of membrane phospholipids 158–159

Proteins Hebraein Amblyomma
hebraeum

11.0 Unclear 163

Ixosin Ixodes sinensis 8.8 Unclear 165

ISAMP Ixodes scapularis 5.3 Unclear 167
aData obtained from references and uniprot.org
bCompound found only in the transcriptome
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