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Abstract

Background: Hadruroides lunatus is the most abundant scorpion species in the Peruvian central coast, where
most of the accidents involving humans are registered. In spite of its prevalence, there are only very few studies
on H. lunatus envenomation. The aim of the present study was to analyze the cardiorespiratory alterations caused
by H. lunatus envenomation in rodents.

Methods: Wistar rats injected with H. lunatus scorpion venom were submitted to electrocardiography. After
euthanasia, rat lungs were collected and histopathologically analyzed. Mouse cardiomyocytes were used to
perform immunofluorescence and calcium transient assays. Data were analyzed by ANOVA or Student’s t-test.
The significance level was set at p < 0.05.

Results: It was observed that H. lunatus venom increased heart rate and caused arrhythmia, thereby impairing
the heart functioning. Lungs of envenomed animals showed significant alterations, such as diffuse hemorrhage.
In addition, immunofluorescence showed that H. lunatus venom was capable of binding to cardiomyocytes.
Furthermore, mouse ventricular cardiomyocytes incubated with H. lunatus venom showed a significant
decrease in calcium transient, confirming that H. lunatus venom exerts a toxic effect on heart.

Conclusion: Our results showed that H. lunatus venom is capable of inducing cardiorespiratory alterations, a
typical systemic effect of scorpionism, stressing the importance of medical monitoring in envenomation cases.

Keywords: Hadruroides lunatus venom, Cardiorespiratory alterations, Electrocardiography, Immunofluorescence,
Calcium transient

Background
The genus Hadruroides comprises 22 species of scor-
pions, distributed throughout Ecuador, Peru, northern
Chile and islands around Galapagos, occupying habi-
tats predominantly of arid climate [1]. Scorpions from
the species Hadruroides lunatus are abundant in Peru-
vian central coast, particularly around the city of Lima,
in rocky areas with “lomas” formations. This species
comprises small to medium-sized scorpions that have

brownish coloration, with dorsal lighter spots (Fig. 1).
H. lunatus differs from other Hadruroides scorpions by
the curved morphology of the pedipalp fixed finger,
creating a gap when fingers are closed, and by the rect-
angular shape of the spots on the tergites [2].
H. lunatus is the most medically relevant species in

Peru [3]. During 2009, the Health Ministry of Peru [4]
reported 41 cases of human accidents caused by this
scoprion in Lima. Although these stings are not consid-
ered lethal, intense pain, edema, ulceration and necrosis
are among the reported symptoms and signs. H. lunatus
venom has not been extensively studied and there are
not sufficient case reports describing human envenom-
ation by this species. However, considering our previous
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works [5, 6], we hypothesize that this scorpion has po-
tential to cause significant damage to their victims.
In a first attempt to characterize the effects of this

venom, our group reported initial data of H. lunatus
experimental envenomation in rodents [5, 6]. Although
H. lunatus scorpion venom (Hlsv) was classified as
moderately toxic when compared with Tityus spp.
venoms, symptoms such as excitability, agitation, sali-
vation, eye secretions, convulsions, leg paralysis, as
well as serological, biochemical and enzymatic alter-
ations were detected in envenomed animals. These
symptoms closely resemble those produced by the venom
of scorpions pertaining to the Buthidae family, which con-
tains the most medically relevant species that possess, in
some cases, neurotoxins in their venoms [7, 8]. These
molecules are peptides that act on ion channels and result
in great release of neurotransmitters, seriously affecting
hemodynamic and cardiorespiratory systems [9, 10].
These previous works suggested Hlsv may have cardio-

toxic effects, since its activity was associated with high
serum levels of creatine kinase (CK) and its isoenzyme
MB (CK–MB) [5]. The aim of this study was to confirm
this possible cardiotoxic activity of Hlsv.

Methods
Animals and venom
Twelve male Wistar rats (weighing 100–150 g) and
four male C57BL/6 (18–22 g) mice were maintained at
the animal facility of the Institute of Biological Sci-
ences, Federal University of Minas Gerais (UFMG),
Belo Horizonte, MG, Brazil, and received water and
food under controlled environmental conditions. The
experimental protocols were approved by the Ethics
Committee on the Use of Laboratory Animals of UFMG
(CETEA-UFMG protocol 092/11).
H. lunatus scorpions were collected in the region of

Atocongo (Lima, Peru) and maintained in the National
Institute of Health (INS), in Lima, Peru. Scorpions were
kept in plastic boxes with water ad libitum and fed
weekly with cockroaches. Venom was obtained by tel-
son electrical stimulation (12 V) [11]. The venom was
diluted in Milli-Q water and stored at −20 °C until use.
Protein concentration was measured by the Lowry
method [12].

SDS-PAGE
Different amounts (5, 10 and 20 μg) of Hlsv were di-
luted in sample buffer under reducing conditions and
separated in 15 % SDS-PAGE gel, according to Laemmli
[13]. The gel ran at 200 V and was stained with silver.

Electrocardiography (ECG)
Rats were anaesthetized using 2.5 % isoflurane with a
Metalvet Plus anesthetic inhaler (Metalvet, Brazil) and
placed in supine position. Pre-anesthetic medication
(morphine 2.5 mg/kg and diazepam 2.5 mg/kg) was ad-
ministrated via intramuscular injections [14]. Electrodes
were attached to forelimbs and hindlimbs. Control group
(n = 6) received 0.4 mL of Milli-Q water via subcutane-
ous (SC) injection, whilst Hlsv treated group (n = 6) re-
ceived Milli-Q water containing 750 μg of Hlsv. This
dose was chosen as the amount of venom corresponding
to one third of the LD50 stablished for this venom [5].
Computer ECG (ECG-PC TEB, Brazil) tracings were
taken prior to the experiment (T0) and variables were
analyzed each 5 min throughout the examination, com-
prising seven time points (T0, T5, T10, T15, T20, T25,
T30). Heart rate (HR), heart rhythm, wave measurement
and intervals were evaluated. As the ECG software gives
the RR interval in millisecond (ms), the heart rate (beats
per minute) was calculated by dividing 60,000/RR inter-
val (ms), as 1 min corresponds to 60,000 milliseconds.
ECG was recorded at speed of 50 mm/s, sensitivity of
2 N and lead II was considered for analysis.

Histopathological examination
Rats were euthanized by hypovolemia under anesthesia
and submitted to necropsy. Lungs were removed, fixed

Fig. 1 Photo of a specimen of Hadruroides lunatus collected in Lima,
Peru. This scorpion presents brown coloration and about 5 cm long
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in 10 % buffered formalin and embedded in paraffin [15].
Histological sections (4 mm) were stained with hematoxylin
and eosin, and analyzed in optical microscope.

Immunofluorescence and calcium transient
measurements
Cardiac ventricular myocytes were isolated from C57BL/6
mice by standard enzymatic solution, as previously de-
scribed [16]. Briefly, animals were euthanized; hearts
quickly removed and perfused using a customized
Langendorff apparatus with a solution containing type
II collagenase (Worthington, USA). After isolation, cells
were maintained in Dulbecco’s modified Eagle’s medium
(DMEM – Sigma, USA) containing 10 % of fetal bovine
serum until use.
For immunofluorescence assay, 500 μL of a solution

containing freshly isolated cardiomyocytes (in DMEM
containing 10 % fetal bovine serum) was incubated with
0.05 or 2 μg/mL of Hlsv at room temperature under
agitation for 30 min, followed by incubation with
200 μg/mL of rabbit IgG anti-Hlsv for 30 min. Cells
were centrifuged, the supernatant removed, and cell
pellet was resuspended in medium containing anti-
rabbit IgG conjugated to Alexa Fluor 488 (Invitrogen,
USA) for 30 min. After centrifugation, the supernatant
was removed and 500 μL of fresh medium was added.
Images were acquired with a Zeiss LSM 510META con-
focal microscope (Zeiss Jena, Germany) and analyzed
with ImageJ software (NIH, USA). Control cells were
incubated only with anti-rabbit IgG conjugated to
Alexa Fluor 488 or with anti-Hlsv IgG plus IgG conju-
gated to Alexa Fluor 488.
To measure the intracellular calcium (Ca2+) transi-

ent, cardiomyocytes were incubated with a calcium
sensitive fluorescent probe (fluo 4 AM – 5 μmol/L) for
30 min, and then with 0.05 μg/mL of Hlsv for 5–
20 min. Calcium transient amplitude was examined in
field-stimulated cells at 1 Hz, with a square pulse of 5 ms
and 30 V. After application of eight electric pulses, a line-
scan imaging was performed in the longitudinal axis of
the cells with an acquisition frequency of 1.54 ms, using
Zeiss 510 Meta confocal microscope. Thirty-four cells
were analyzed in the control group and 32 in Hlsv group.

Statistical analysis
All variables were submitted to normality and homosce-
dasticity analyses and then analysis of variance (ANOVA).
Parametric variables were studied by Student-Newman-
Keuls (SNK) posttest and non-parametric variables were
evaluated by either Kruskal-Wallis or Friedman posttests.
Regression analysis was accessed for HR throughout all
time points. Significance was considered for 5 % (p < 0.05).
Analyses were done in R (2.11 version) software program.

Student’s t-test was used to access significance of variabil-
ity among groups in calcium transient analysis.

Results
SDS-PAGE
To evaluate venom content, electrophoresis of different
amounts of Hlsv (5, 10 and 20 μg) under reducing con-
ditions was performed. The venom profile showed, in
addition to a high content of low molecular weight
compounds compatible with neurotoxins, a consider-
able amount of proteins in the range between 12 and
14 kDa. Another group of proteins were also visualized
above 30 kDa (Fig. 2).

Electrocardiographic analysis
At T0, all animals from both groups showed similar
ECG tracings with no visible alterations. As usual, RR
interval distance was considered to calculate the HR
(Table 1). The mean HR on Hlsv group significantly in-
creased from T0 to T5. The RR interval from an animal
from Hlsv group went from 133 ms (HR of 451 bpm) at
T0 to 97 ms (HR of 619 bpm) at T5. It means that after
5 min of envenomation, animals presented early signs of
poisoning, demonstrated by the significant increase of
HR (mean of 424 to 463 bpm), being detected a HR of
619 bpm in one of the animals. At this time (T5), no dif-
ference was observed on the control group. At T10, the
HR of Hlsv group decreased to a value similar to T0,
remaining normal up to T30. Within Hlsv group, HR
values fitted cubic regression (R2 = 74.36 %; p = 0.0486)

Fig. 2 SDS-PAGE 15 % of Hlsv. In lane 1, the low molecular weight
marker. In the other lanes, 20, 10 and 5 μg of Hlsv under reducing
conditions. The gel was silver-stained
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and T5 indicated the highest HR value (p = 0.0380), be-
ing others similar to T0 (Table 1). Within control group,
HR values fitted simple linear regression (R2 = 93.04 %;
p = 0.0004) and no differences were detected in all times.
Arrhythmias were detected only on Hlsv group at T15.

Alterations such as atrial premature complex (APC)
(Fig. 3a) and ventricular premature complex (VPC)
(Fig. 3b) were detected in two different animals.
An individual from Hlsv group showed rS wave at T5

(Fig. 3c). None of these alterations were observed in
control group. Other sign of envenomation observed on
Hlsv group was increased T wave amplitude. As shown
in Fig. 3d, T wave increased from 0.05 mV (T0) to
0.12 mV (T20) and reached 0.16 mV (T30) (p < 0.05).
There was no change on amplitude of T wave for con-
trol group. On the other hand, from 10 to 30 min after
venom administration, T wave amplitude on Hlsv group
was higher than control reaching the highest values at
T25 and T30 (Table 1).
Alterations in QT interval (Fig. 3e) and in PR interval

(Fig. 3f ) in Hlsv group were observed. QT interval in-
creased from 67 ms (T0) to 97 ms (T20) and 107 ms
(T30) (p < 0.05). PR interval also increased by showing
43 ms at T0, 50 ms at T10 and 63 ms at T30 (p < 0.05).

Histopathological examination
Lungs of animals from control and Hlsv groups were re-
moved and analyzed microscopically. Only lungs of Hlsv
treated rats showed significant alterations. Those of control
animals were morphologically normal (Fig. 4a), whilst lungs
of envenomed rats showed diffuse hemorrhage (Fig. 4b).

Immunofluorescence and calcium transient
To investigate whether Hlsv could bind to mouse ven-
tricular cardiomyocytes, suggesting a direct cardiotoxic
effect (Fig. 5), freshly isolated ventricular myocytes were
treated with Hlsv and then incubated with anti-Hlsv IgG
for evaluation. Fluorescent labeling was detected only in

Hlsv treated cells (Fig. 5a). Results were analyzed using
ImageJ software to quantify the fluorescence intensity
(Fig. 5b). A concentration-dependent binding was observed.
At last, it was investigated whether Hlsv could cause

alterations in the calcium transient in isolated cardio-
myocytes. Calcium transient amplitude, given by the ra-
tio between maximal fluorescence (F) and baseline
fluorescence (F0), was significantly reduced in cardiac
cells incubated with Hlsv compared to control cells
(Fig. 6). Thirty-four cardiomyocytes were analyzed in
control group and 32 in the Hlsv group (Fig. 6b).

Discussion
It is known that scorpion envenomations associated with
cardiorespiratory alterations may culminate in heart fail-
ure, pulmonary edema and even death [10, 17]. The
present study is the first to evaluate the consequences of
H. lunatus venom with special attention to the cardiore-
spiratory system. Other than some transcriptomic ana-
lysis, little is known about H. lunatus and other non-
Buthidae scorpion venoms and the potential harm
caused by accidents with these less medically relevant
scorpion species [18–21].
Since scorpion envenomation leads to adrenalin re-

lease, the increase in the heart rate detected by ECG
might be a consequence of its positive chronotropic ef-
fect [22]. Venom interference on heart electric activity
regulation results in ionic imbalance between intra and
extracellular spaces. Consequently, the duration of cell
depolarization phase is longer and leads to a hyperex-
cited status [23]. This explains the premature complexes
of atrial or ventricular origin detected on envenomed
rats.
Electrolytic imbalance has already been reported as a

systemic effect of scorpion envenomation [10]. Such al-
teration may be diagnosed by ECG as the presence of in-
creased T waves, which has been detected in victims of
scorpionism [24]. T wave amplitude must be lower than
a quarter of the R amplitude and higher values are a
sensitivity parameter for electrolytic imbalance [23].
Therefore, increased T waves found in Hlsv group may
be a consequence of electrolytic imbalance.
Moreover, rS wave detected on Hlsv group suggests over-

load of the right ventricle, due to pulmonary hemorrhage,
which was confirmed by diffuse hemorrhage detected
in lung histology. Occurrence of pulmonary alterations
due scorpion envenomation is a common finding in the
literature and pulmonary edema, hemorrhage and in-
flammation have already been described, but predomin-
antly in victims of stings by Buthidae family scorpions
[10, 22, 25, 26]. Describing such alterations as a result of
envenomation by a species considered not very toxic is re-
markable and draws attention to the fact that accidents
with this scorpion should receive medical attention, since

Table 1 Heart rate and T wave amplitude alterations

Time (T) Heart rate (bpm) T wave amplitude (mV)

min Control Hlsv Control Hlsv

T0 398.1 ± 25.1 420.04 ± 36.9 0.07 ± 0.03 0.07 ± 0.03

T5 406.6 ± 22.1 463.37 ± 40.9ab 0.08 ± 0.04 0.09 ± 0.04

T10 420.1 ± 20.0 419.02 ± 29.3 0.08 ± 0.04 0.14 ± 0.03cd

T15 426.6 ± 22.1 416.23 ± 24.0 0.08 ± 0.03 0.15 ± 0.02cd

T20 443.3 ± 13.7 402.30 ± 17.4 0.07 ± 0.03 0.17 ± 0.03cd

T25 450.0 ± 15.2 397.56 ± 20.8 0.06 ± 0.03 0.19 ± 0.02cde

T30 446.6 ± 18.8 410.43 ± 37.5 0.06 ± 0.02 0.19 ± 0.03cde

Hlsv group presented significant increase of heart rate at T5 (highlighted in
bold). avs. control group T5; T5 bvs. Hlsv in all other time points. Hlsv group
presented increased T waves at all times after T10 (highlighted in bold). cvs.
control group at the same time point; dT10 vs. venom group at T0 and T5;
eT25 and T30 vs. venom group at T10 and T15

Costal-Oliveira et al. Journal of Venomous Animals and Toxins including Tropical Diseases  (2017) 23:2 Page 4 of 9



Fig. 3 Electrocardiogram alterations in animals treated with Hlsv. ECG from two animals of the treated group showing (a) atrial premature
complex and (b) ventricular premature complex 15 min after the envenomation. (c) At T0, all QRS complexes were normal. At T5, all complexes
changed the morphology to rS wave. Velocity 50 mm/s, sensibility 2 N, lead II. (d) At T0, T wave was 0.05 mV. At T20, T wave more than doubled
its amplitude, reaching 0.12 mV. At T30 T wave was 0.16 mV. (e) Increase on QT interval from 67 ms at T0, to 97 ms at T20 and 107 ms at T30. (f)
Increase on PR interval from 43 ms at T0, to 50 ms at T10 and, then, to 63 ms at T30. Velocity 50 mm/s, sensibility 2 N, lead II
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lung complications are considered the main cause of death
in victims of scorpion stings [25–27].
Some of these ECG findings were also detected in a

similar animal model using Tityus fasciolatus venom, a
member of the Buthidae family, one of the most toxic
scorpions species [10]. Indeed, several ECG alterations

are also reported in patients severely envenomed by
buthid scorpions Tityus [27]. H. lunatus does not belong
to this family and yet present similar alterations, which,
once more, emphasizes the importance of studying the
so-called less toxic venoms and providing careful med-
ical support to Hlsv envenomed victims [28].

Fig. 4 Histopathology of the lungs. (a) Lungs of control rats showing no alterations and (b) lungs with diffuse hemorrhage of animals injected
with 750 μg of H. lunatus venom. Magnification: 40x

Fig. 5 Immunolocalization of Hlsv in isolated mouse cardiomyocytes. a Localization of Hlsv detected with anti-Hlsv IgGs in ventricular myocytes.
Cells were treated with Hlsv, incubated with anti-Hlsv IgGs antibodies, followed by anti-rabbit IgG conjugated to Alexa Fluor 488 (Invitrogen, USA).
As control, cardiomyocytes were treated only with secondary antibodies (control 1) or with IgG anti-Hlsv + secondary antibodies (control 2). Seven
cells were analyzed in each group. b Bar graph shows the concentration-dependency of venom binding to cardiac cells
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Since cardiac alterations were detected by ECG and
corroborated by prior enzymatic tests, we decided to
evaluate the direct venom effect in cardiomyocytes [5].
Although the so-called “adrenergic storm”, caused by
venom neurotoxin-induced discharge of catecholamines,
is widely accepted as the main reason for the cardiore-
spiratory impairment in scorpion envenomation, it is
suggested that the release of cytokines and a direct effect
of venom components on the heart can also account for
this clinical condition [8, 29–31]. We have previously
attested the presence of neurotoxins in Hlsv and the
augment in inflammatory cytokines following Hlsv ad-
ministration in mice [5, 6]. In the present work, it was
shown that Hlsv is able to directly bind to mouse car-
diomyocytes. Therefore, all the possible molecular
mechanisms for the onset of cardiorespiratory syn-
drome following scorpion envenoming seems to be
present in Hlsv.
The decrease in calcium transient amplitude observed

in cells exposed to Hlsv might explain some of the ECG
alterations detected on treated group. It was already re-
ported that imperatoxin I (IpTxI), a 15 kDa phospholip-
ase from Pandinus imperator scorpion, induces a fast
and reversible blockade of ryanodine receptors (RYR) of
skeletal and heart muscles. When injected into ventricu-
lar cells, IpTxI leads to decreased amplitude of contrac-
tion and intracellular calcium transient, which indicates
a blockade of calcium release from the sarcoplasmic
reticulum [32]. The lipolytic fraction M1 from Buthus
occitanus tunetanus scorpion venom was also capable of
decreasing calcium transient in isolated cardiomyocytes
[33]. Although the specific toxin responsible for this

action was not identified, its lipolytic activity may sug-
gest the presence of phospholipases in this fraction.
We have previously showed that Hlsv contains remark-

able phospholipase activity [5]. The presence of a high
content of proteins between 12 and 17 kDa, compatible
with PLA2 molecular weight, was also attested by SDS-
PAGE in the present work. Therefore, it is possible to
suggest that an enzyme similar to IpTxI can be present
in Hlsv and be involved in the effects observed in the
present study. It has been indicated that scorpion venom
PLA2 can also be involved in the induction of lung
edema [34]. A component pertaining to this class of en-
zymes in Hlsv can be the responsible for many of the al-
terations described in this study. The isolation of Hlsv
PLA2 would help to elucidate its role in envenomation.

Conclusion
H. lunatus scorpion venom (Hlsv) induced cardiorespira-
tory alterations in experimentally envenomed rodents.
The study of the pathogenesis of systemic effects pro-
voked by this venom, and the involvement of individual
venom components in the complex alterations detected,
will be useful for identifying suitable therapeutic agents
for treating the clinical symptoms caused by Hlsv.
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