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Abstract

Lesions to the nervous system often produce hemorrhage and tissue loss that are difficult, if not impossible, to
repair. Therefore, scar formation, inflammation and cavitation take place, expanding the lesion epicenter. This
significantly worsens the patient conditions and impairment, increasing neuronal loss and glial reaction, which in
turn further decreases the chances of a positive outcome. The possibility of using hemostatic substances that also
function as a scaffold, such as the fibrin sealant, reduces surgical time and improve postoperative recovery. To date,
several studies have demonstrated that human blood derived fibrin sealant produces positive effects in different
interventions, becoming an efficient alternative to suturing. To provide an alternative to homologous fibrin sealants,
the Center for the Study of Venoms and Venomous Animals (CEVAP, Brazil) has proposed a new bioproduct
composed of certified animal components, including a thrombin-like enzyme obtained from snake venom and
bubaline fibrinogen. Thus, the present review brings up to date literature assessment on the use of fibrin sealant for
nervous system repair and positions the new heterologous bioproduct from CEVAP as an alternative to the
commercial counterparts. In this way, clinical and pre-clinical data are discussed in different topics, ranging from
central nervous system to peripheral nervous system applications, specifying positive results as well as future
enhancements that are necessary for improving the use of fibrin sealant therapy.
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Background
The nervous system is immensely complex and respon-
sible for most of the biological responses and maintenance
of homeostasis. It is, however, subject to injuries and
pathologies that usually require surgical intervention. Due
to its cellular organization, high vascularization and the
presence of the blood–brain barrier, to interfere in the
nervous tissue parenchyma constitutes a major challenge.
The possibility of using a biological scaffold to provide
hemostasis, reestablishment of subarachnoid space

tightness as well as a vehicle for drug and stem cell
delivery opened a new and promising field of
research.
The use of homologous commercial fibrin sealants (FS)

in a number of surgical procedures is now consolidated as
an efficient method to avoid suturing, enhancing success
ratio and reducing patient recovery time. To provide an
alternative to human blood derived fibrin sealants, the
Center for the Study of Venoms and Venomous Animals
(CEVAP – UNESP) has proposed a new heterologous
bioproduct composed of certified animal components,
including a thrombin-like enzyme obtained from snake
venom and a buffalo-cryoprecipitate rich in fibrinogen
[1–4]. After more than 20 years of efforts, this study
is now under clinical trials [5–10].
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The present review positions CEVAP heterologous
fibrin sealant (HFS) in the context of nervous system
repair following trauma and diseases, indicating a pos-
sible advantageous use in different instances. Recent
literature is provided and discussed in different topics,
ranging from central nervous system (CNS) to periph-
eral nervous system (PNS) applications, specifying
positive results as well as future enhancements that are
necessary for improving the use of fibrin sealant therapy.

Brain
The use of FS in brain lesions is not restricted to its
common use in the treatment and prevention of
cerebrospinal fluid (CSF) leaks [11]. It has expanded to a
wide range of surgical interventions including as a
hemostatic agent following the total or partial extraction
of brain tumors and for coaptation of nerves and brain
vessels, replacing conventional sutures [11–13]. There
are also promising results from combining this valuable
adjunct with various drugs and other agents to enhance
regenerative and therapeutic effects after a wide
spectrum of brain traumas whether accidental, surgical
or even congenital [14–17]. Since the early 20th century,
fibrin has been used for stopping cerebral hemorrhage
and it is currently being employed through the sealant in
various reparative procedures [2, 18].
A cerebrospinal fluid fistula is a condition in which

there is a leak of CSF to the nasal cavity, due to fracture
of the skull, resulting from traumatic causes (accidental
or surgical) and non-traumatic causes, also known as
spontaneous fistulas [11, 19]. In both cases, the persistent
leakage of CSF might cause complications that are respon-
sible for significant mortality and morbidity [20]. Most
leaks provoked by head trauma will seal without interven-
tion; however, spontaneous or surgically-induced leaks
often require operative repair [20].
Some authors described treatment by FS of acute

(intraoperative) cerebrospinal fluid leaks [21, 22]. Green
et al. [21] evaluated FS as an adjunct to sutured dural
repair to obtain intraoperative watertight closure in
patients undergoing elective cranial surgery. The study
demonstrated the superiority of FS over sutures in estab-
lishing intraoperative tight closure of a dural incision.
Furthermore, Hobbs et al. [22] demonstrated the effect-
iveness of FS in 120 patients undergoing pituitary
surgery procedures with intraoperative CSF leaks. All
intraoperative leaks were managed using the FS with
different materials, resulting in a low incidence of post-
operative CSF leakage.
Other authors described FS as preventing postoperative

cerebrospinal fluid leaks [23, 24]. Its use was predomin-
antly in cranial procedures with low incidences of postop-
erative CSF leaks [11]. Many cases involving patients
undergoing transsphenoidal surgery in which postoperative

CSF leaks significantly decreased were reported [11]. For
example, Yoshimoto et al. [23] evaluated a FS for preven-
tion of postoperative extra dural fluid collection through
the dural sutures in patients undergoing craniotomy for an
unruptured aneurysm. Once again, the study demonstrated
the superiority of the fibrin sealant over sutures. Further-
more, a retrospective (historical) study by Kassam et al.
[24] evaluated the efficacy and cost-effectiveness of fibrin
in patients with intracranial pathological lesions. The
incidence of CSF leaking in matched groups treated with
FS or without it were compared. There were no cases of
CSF leak in the group of patients receiving FS. Thus, the
authors conclude that the FS reduces the incidence of
postoperative CSF leaks.
Recent studies in animal models are corroborating the

hypothesis that FS prevents CSF leakage. Hutchinson et
al. [25] compared two available FS with a synthetic poly-
ethylene glycol (PEG) hydrogel sealant in a canine durot-
omy repair model. This well-characterized model
employed 27 mongrel dogs to assess the ability of
sealants to achieve intraoperative tight seals of the dura
mater, as well as long-term safety and efficacy. The
application of these sealants was 100% effective in pre-
venting CSF leakage.
Finally, a few authors described FS as a treatment for

persistent CSF leaks. Cappabianca et al. [26] locally
injected FS in patients following different neurosurgical
procedures. The injection of FS has proven to be effective
in filling or sealing postoperative recesses and treating
minor or initial CSF leaks, adding another possibility for
threatening postoperative leaks.
Besides CSF leaks, postoperative subdural fluid collec-

tion (SFC) is another complication of craniotomy, being
most frequently employed after aneurysm surgery [27].
Most SFC cases eventually disappear or are clinically
asymptomatic. However, some SFCs enlarge, leading to
hygromas or subdural hematomas, which require
surgical treatment [27]. In this sense, arachnoid plasty
has been demonstrated to be effective for preventing
SFC. Several arachnoid plasty methods have been
reported including its sealing with FS or covering with
appropriate materials and FS. Thus, Abe et al. [27] ex-
amined the efficacy of arachnoid plasty with collagen
sheet and FS after the clipping of unruptured aneurysms.
The procedure achieved favorable outcomes with zero
incidence of SFC or complications such as surgical
infection.
Lee et al. [12] described a series of 26 patients who

underwent microneurosurgical operations in which FS
was used. The patients had various neurological disorders:
11 had cerebral aneurysms, 11 had brain tumors, two had
lipomyelomeningoceles, one had cerebral arteriovenous
malformation and one had torn dura resulting from a
mastoidectomy. The FS was tested and effective in the
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following procedures: reinforcement of aneurysmal clip-
ping; local hemostasis; protection of cerebral veins and
sealing of CSF leakage.
Fujimura et al. [13] studied the incidence of chronic

hydrocephalus by analyzing a series of 39 patients with
subarachnoid hemorrhage, who underwent perivascular
coating with FS of cerebral arteries after clipping of an
aneurysm. The authors concluded that there were no
complications caused by FS and that it protected the
cerebral arteries during the acute phase.
Furthermore, there are also promising results associating

fibrin sealants with other components, even in cell therapy.
An example of this association is the combination of
collagen foil or fleece with FS. It is known that the collagen
has been successfully employed as a dural graft for years,
but when used in combination with fibrin sealant, it en-
hances sealing and tissue regeneration properties, positively
reflecting on hemostasis and stimulation of tissue repair.
Besides, such combination prevents fibrin sealant to be
washed away in cases of CSF leakage. Thus, a combination
of collagen and FS is effective, safe and biocompatible. No
further adverse events, complications or toxicity were
reported [14–16, 28, 29].
Another example is the FS association with stem cells.

Chen et al. [17] investigated the therapeutic effects of
subdural transplantation of inducible pluripotent stem
cells (iPS) mixed with fibrin sealant (iPS-FS) on rats with
cerebral ischemia induced by middle cerebral artery
occlusion (MCAO). They demonstrated that subdural
iPS-FS enhances recovery from induced stroke and is
able to avoid iatrogenic injury to brain parenchyma, thus
comprising a safer alternative approach. In this respect,
due to the feasibility of obtaining formulations with
varying characteristics (customization), the use of the
derived snake venom sealant enables an association with
potentially different compounds beneficial for the regen-
eration process of the nervous system.
Thus, it is evident that the FS is a valuable adjuvant to

various microneurosurgical procedures, and potentially
useful by contributing to the improvement of surgical
techniques related to different disorders and adversities
in the brain and surrounding environment.

Spinal cord
Spinal cord injury (SCI) by compression or spondylo-
listhesis usually results in cavitation and glial scar forma-
tion. Biomatrices with immunomodulatory properties
are of interest since they may be used to bridge the
lesion, reducing the formation of scar tissue, as well as
facilitating axonal growth. In this context, FS could act
as a carrier for therapeutic agents, such as neurotrophic
factors and stem cells [30–32].
Guest et al. [33] combined fibroblast growth factor

(FGF) and FS to human Schwann-cell grafts which were

engrafted to transected rat spinal cords. Such therapy
reduced retrograde axonal degeneration stimulating fiber
regeneration throughout the implant. In human patients,
a therapeutic combination of FGF and FS was applied to
the injured spinal segment and used to prevent postop-
erative CSF leakage. The treatment resulted in signifi-
cant motor and sensory improvements [34].
FS can be complexed with FGF and nerve grafts as

well. Kuo et al. [35] used autologous peripheral intercos-
tal nerve segments combined with FGF in an FS scaffold,
implanted to bridge the 5 mm gap in transected rat
spinal cords. FGF treatment induced IL-4 expression
while nerve grafts induced nerve grow factor (NGF) and
brain-derived neurotrophic factor (BDNF) expression.
This combined treatment has also been applied to ani-
mals with chronic complete SCI by the removal of scar
tissue to expose fresh tissue at the surface of the spinal
cord stumps [36]. Such approach restored a degree of
hind-limb function [36, 37]. Tsai et al. [38] also treated
spinal cord transection with peripheral nerve grafts and
spinal cord anastomosis, both including FGF1 in an FS
scaffold. Rats recovered both motor-evoked potentials,
recorded at the lumbar level and locomotor function
due to long tract regeneration.
Proteins can be complexed with fibrin matrix. Lord-

Fontaine et al. [39] used rat contusion model and topical
application of the protein BA-210 onto the spinal cord
using an FS formulation. BA-210 inactivates Rho, which
activation is a conserved response in various types of
central injuries, thus significantly reducing tissue loss in
the perilesional area and rostrocaudal spreading of lesion
cavity. Significant walking abilities were regained more
rapidly and more consistently in rats treated with
BA-210 [39]. Although a previous work has shown a
potential scaffold role for FS, which enhanced FGF
and BA-210 treatments, FS action itself has not been
fully evaluated [39].
FS is already applied by neurosurgeons as a hemostatic

agent and for the control of cerebrospinal fluid (CSF)
leaks [15, 32, 40–42]. In this sense, postoperative CSF
leakage is a known complication of spinal surgery. The
ideal material to be used in the dural closure is still a
matter of debate [43]. Prompt surgery is recommended
to prevent the complications such as meningitis, CSF
fistulas, and pseudocyst formation with potential nerve
compression [44]. In this regard, FS has been considered
effective for prevention of CSF leakage in the field of
neurosurgery and spinal surgery [45]. Frequently, durot-
omy margin is uneven, and watertight dural closure
cannot be achieved only by single sutures. In such cases,
the use of a sealant is helpful [45–49].
Many authors recommend FS to reinforce the site of

durotomy and have reported that the FS-treated patients
presented a significantly higher rate of tight closure than
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controls as well as decreased postoperative drainage
output and time spent at the hospital [45, 48–51]. Percu-
taneous therapy of FS in humans with postoperative CSF
leaks generated a 50% success rate, similar to the 56%
success rate in rats with direct application of FS alone,
after experimental induction of CSF rhinorrhea [44, 52].
Patel et al. [44] recommend autologous cryoprecipitate
use whenever possible to avoid the risk of blood-borne
pathogens, including hepatitis C. The preparation of
cryoprecipitate from autologous blood requires three
days, and 500 mL of whole blood generates 20 to 25 mL
of cryoprecipitate [44].
An autologous FS has also been used by Nakamura

et al. [45] – in comparison to commercial FS – in patients
undergoing spinal surgery. No complications such as in-
fection or continuous CSF leak were observed in any case.
The volume of drainage fluid was significantly reduced in
the group subjected to either autologous or commercial
FS, when compared to the group without FS. As to safety,
the autologous adhesive was equal to the commercial
counterpart. The preventive effects of both adhesives were
equivalent, but the autologous adhesive is much cheaper
and provides the advantage of being risk-free of transfu-
sion infection.
As a treatment for sacral meningeal cysts, Paulsen

et al. [53] determined whether placement of FS after
aspiration could offer a more definitive therapy. The use
of FS resulted in marked improvement in all patients, with
no evidence of pathology recurrence [54].
Although FS use has produced positive results, there are

reports of inconsistent outcomes. Thus, in a retrospective
analysis done by Balasubramaniam et al. [43], evaluating
children submitted to surgery for various spinal patholo-
gies, FS had no effect, though the numbers were statisti-
cally too small. Jankowitz et al. [55] reached a similar
conclusion that the use of FS did not significantly decrease
the incidence of subsequent CSF leakage while studying
the potential efficacy of FS TISSEEL® (Baxter) for enhan-
cing dural repair after lumbar spine surgery. Considering
the risk of healing inhibition, the findings did not support
the prophylactic use of FS when a primary repair is
deemed adequate. Augmentation with muscle, fat, FS, or
graft should be considered when the dural closure is
suboptimal.
When used to fill the lesion gap after SCI, FS provided

neuroprotective effects. Tissucol® (Baxter) FS was used
by Petter-Puchner et al. [32] after thoracic spinal cord
hemisection in rats. Three and seven days after lesion,
histology showed a more pronounced inflammatory
response triggered by macrophages in the FS-treated
group. This difference did not impair behavioral or
reflex tests performed at the same time points. At day
28, recruitment of macrophages and microglia had
substantially decreased and no intergroup difference was

detectable. Substantial benefits were found in relation to
motor function and proprioceptive recovery in the FS-
treated group [32]. A similar result was achieved after
intramedullary axotomy and a new heterologous fibrin
sealant (HFS) treatment. The HFS-treated group dis-
played improved motoneuronal survival after lesion and
showed upregulation of iNOS2 and arginase1 genes,
proinflammatory (TNFα and IL1β) and antiinflammatory
cytokines (IL10, IL4, and IL13). Thus, HFS enhanced
early macrophage recruitment and proinflammatory cyto-
kine expression, which contributed to an acceleration of
inflammation resolution, shown by the increased expres-
sion of M2 macrophage markers and antiinflammatory
cytokines. The greater inflammation was coupled with
better motor performance in the walking track test [56].

Spinal cord ventral and dorsal roots
Spinal motoneurons are located in the spinal cord
ventral horn and send their axon towards the periphery
to innervate skeletal muscles. These efferent fibers,
among other functions, control the voluntary movements
in response to central brain stimulation and/or sensory
feedback. Afferent fibers bring sensorial information
(touch, temperature, pressure, pain and proprioception)
from the periphery to the CNS through the dorsal roots.
Sensorial feedback and motor control are crucial in our
everyday life, given their roles in the controlling and
adjusting of movements and in adaption to environmental
changes [57]. Unfortunately, nerve roots can be damaged,
thereby disrupting complex and highly specialized neural
networks, impairing neural signal transmission.
A schematic view of dorsal and ventral nerve roots, as

well as structures of gray and white matter, are repre-
sented in Fig. 1. It also illustrates the ventral root avulsion
and dorsal root section lesions. Axons in the white matter
are highlighted with the program AxonSeg, available
online [58].
Proximal root injury, differently from peripheral nerve

lesion, results in extensive degeneration of adult moto-
neurons and loss of sensory feedback since axons cannot
regenerate into the spinal cord [59, 60]. When this injury
happens in an abrupt traction, it is called avulsion
[61, 62]. Such lesion or damage frequently occurs in
severe brachial plexus injuries due to the high impact of
the trauma [61]. In cats and dogs, avulsion is normally as-
sociated with being hit by vehicles [63, 64]. Nevertheless,
in humans, it often happens in vehicle or sport accidents
with limb traction or shoulder depression. In such
accidents, the brachial plexus can be damaged when the
head is pushed away from the shoulder [57, 65]. Compres-
sion or crushing, industrial trauma, and iatrogenic injury
are mechanisms that can also produce root avulsion
[61, 62]; and a similar lesion can also happen in the
newborn during childbirth [57].
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The disconnection of spinal motoneurons from the
muscle fibers interrupts the anterograde flow of neuro-
trophic factors, leading to neuronal degeneration and
skeletal muscle paralysis. On the contrary, deafferen-
tation after dorsal root disconnection does not result in
significant dorsal root ganglia neuronal death, although
it leads to loss of sensory feedback [66, 67]. Overall, root
lesions trigger several long-lasting structural changes in
the CNS, affecting not only local spinal cord circuits but
also the entire motor pathway, including the motor
cortex [68, 69].
Extensive synaptic plasticity occurs in the motoneuron

cell body in response to ventral root avulsion, with pref-
erential loss of excitatory inputs [70, 71]. In turn, such
imbalance of synaptic connections impairs voluntary
movements and may cause neuropathic pain and/or
hyperalgesia. Additionally, proximal lesions also break
the blood–brain barrier, facilitating the influx of
blood-borne cells, increasing inflammation and glial
reaction [65, 72–76]. Reactive astrocytes participate in
presynaptic terminal retraction from the surface of
injured motoneurons, so that reducing inflammation

usually preserves spinal cord circuits and facilitates
regeneration [74, 77].
The clinical effect of root injury is not only restricted

the loss of limb function ipsilateral to the lesion, but also
several other subsequent clinical complications, such as
meningeal cysts, intractable pain, impaired blood circu-
lation, herniation and monoplegia [57, 62]. From the
point of view of the patient, brachial plexus injury is
devastating, leading to unemployment, economic hard-
ship, and depression.
Poor recovery of function after brachial plexus avulsion

can occur due to considerable distances through which
motoneuron axons must regenerate to reconnect with the
target muscles and the slow growth velocity of the regen-
erating axons, which cannot reach muscles before
irreversible atrophy [78–80]. Also, when regenerating,
afferent axons from the dorsal root ganglia reach the
inhibitory environment of the spinal cord, being unable to
reenter the CNS and reestablish functional connections
[81]. On this matter, various attempts to promote regener-
ation after root lesion have been reported. Previous efforts
to repair ventral roots were performed in rats by Carlstedt

Fig. 1 Schematic view of dorsal and ventral nerve roots. Sensory neurons bring sensory inputs through the dorsal roots, which are transmitted to
the motoneurons via interneurons. Motoneurons send their axons through ventral roots that innervate target muscles. Dorsal root lesion and
ventral root avulsion have been used to evaluate the efficacy of the CEVAP heterologous fibrin sealant (HFS) for CNS repair and regeneration. The
inset shows presynaptic terminals in apposition to motoneurons that retract after injury (synapse pruning). Myelinated axons located in the white
matter are highlighted (top left) by using AxonSeg, an open source software for axon morphometry [58]
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et al. [82] followed by Cullheim et al. in cats [83]. In these
studies, the avulsed ventral roots were reimplanted on the
surface of spinal cord lateral funiculus. A similar
technique was applied to humans; however, with limited
success [57, 84]. Further experimental ventral root
implant approaches were carried out using 9/0 non-
absorbable sutures (EthilonH®), lithium chloride, tissue
glue (TisseelH®), fibrin sealant (TissueCol®; Baxter
BVUtrecht, the Netherlands), nerve grafting, biodegrad-
able scaffolds and nerve transfer [79, 85–91]. For dorsal
root repair, some promising results towards regeneration
were obtained by using inhibitors of chondroitin sulfate
proteoglycans, myelin associated proteins, and by knock-
ing down neurotrophin receptors [92–103].
The heterologous fibrin sealant derived from snake

venom (HFS), alone or in association with cell therapy,
has already shown promising results in the treatment of
dorsal and ventral root injuries [67, 104]. Figure 1 shows
the dorsal root rhizotomy. The HFS usage to reconnect
ventral and dorsal roots also resulted in the statistically
significant preservation of injured motoneurons, improved
synaptic circuitry recovery, upregulation of trophic factors,
and substantial recovery of sensory and motor function
[67, 104–107]. Such studies provide a novel approach for
treating spinal cord root lesions, aiming at restoring CNS/
PNS interface integrity.

Vidigal de Castro et al. [107] showed a significant
restoration of weight-bearing capacity following ventral
root avulsion (VRA) and reimplantation with the
heterologous (HFS) and commercial fibrin sealant (FS),
showed by the overview of CatWalk System (Fig. 2) and
Additional file 1 (VRA only), Additional file 2 (VRA +
HFS) and Additional file 3 (VRA + FS).

Peripheral nervous system
Peripheral nerve injuries lead to the disconnection of the
nervous system with target organs, resulting in paralysis
and numbness. Incomplete injuries usually cause pharma-
cologically resistant neuropathic pain [108]. Thus, the
primary concern after nerve lesion is to secure the
anatomical continuity, allowing regeneration of the axons
towards the periphery.
End-to-end coaptation, with or without grafting is the

gold-standard technique used to repair a sectioned
peripheral nerve [109, 110]. Thus, the surgical approach
depends on the degree of the lesion. Direct nerve repair
with epineural suturing is possible when a tension-free ad-
justment and adequate vascularization can be achieved.
When there is a gap between the stumps, generating
significant tension for direct epineural repair, the interpos-
ition of autologous nerve grafts is required. In acute and
clean nerve transection, the primary repair should be

Fig. 2 Paw prints and walking profile after ventral root avulsion and treatment with two different fibrin sealants, obtained with the CatWalk System
(Noldus®). a-c Preoperative; d-f ventral root avulsion (VRA) only; g-i VRA followed by reimplantation with new heterologous fibrin sealant derived from
snake venom (VRA + HFS); j-l VRA followed by reimplantation with commercial fibrin sealant (VRA + FS). It is possible to observe that (h and k) root
reimplantation results in paw print partial recovery, whereas (e) avulsion alone leads to permanent paralysis
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performed as soon as possible to improve neuronal
survival and decrease fibrosis of the distal stump.
Minimizing the number of sutures can also decrease iat-

rogenic nerve tissue trauma. In this sense, alternative repair
techniques have been studied in order to improve the sta-
bility of end-to-end coaptation. Tissue adhesives, such as
the fibrin sealant, can either supplement or replace sutures
and present advantages including reduction of surgery time
[111, 112]. Besides, the FS may reduce suture-associated
inflammation and enhance axonal regeneration [113].
A study comparing the use of FS alone, suturing and

the combination of both techniques after sciatic nerve
injury showed that fibrin sealant presented better results
than suturing considering recovery of evoked motor ac-
tion potential [114]. Other studies comparing the use of
FS associated with peroneal nerve tubulization demon-
strate that FS allows nerve regeneration and functional
recovery without formation of neuroma [115, 116].
End-to-side coaptation has been proposed to repair

peripheral nerves in the absence of the proximal stump.
When associated with FS in rats, a greater number of
regenerating fibers and improved motor recovery were
observed [117].
Additional to FS coaptation, the use of neuroprotective

and pro-regenerative substances, such as atorvastatin,
was analyzed after sciatic nerve lesion demonstrating
beneficial effects on muscle strength [118–121].
Wood et al. [122] evaluated the effects of glial cell-

derived neurotrophic factor (GDNF) microspheres associ-
ated with FS, showing improvement in axonal regeneration
and size of regrown axons. Tubular conduits prepared
from FS can also improve short- and long-term regener-
ation following peripheral nerve injury, with regard to
axonal sprouting and muscle weight recovery [123, 124].
Also, the evaluation of FS with bone marrow mononuclear
stem cells on sciatic nerve injury demonstrated better
results compared with FS alone as to morphometric
parameters [125].
Importantly, the better understanding of nerve regen-

eration approaches requires careful evaluation of motor
and sensory behavior. Such functional recovery is crucial
for validation of morphological and molecular (e.g. gene
expression) data [126]. In this sense, our group has
dedicated much effort to combine reparative approaches
with histological and molecular analyses and behavioral
tests in order to improve the completeness of the results
and findings [127, 128].
The fibrin sealant derived from snake venom (HFS)

has been used for rat neonatal sciatic nerve coaptation
facilitating the regenerative process. Furthermore, the
comparison between HFS with another commercially
available sealant (FS) revealed that both present similar
performance in peripheral nerve repair [127]. Additional
files 4, 5 and 6 illustrate normal gait pattern, evaluation

after neonatal sciatic nerve axotomy and following coap-
tation, respectively.
An early study comparing HFS with other commercially

available sealants showed that the new sealant promoted
adequate sciatic nerve adherence and repair, highlighting
that the nerve without repair showed extensive fibrosis
and absence of nerve fibers [129]. More recently, another
study using HFS, performed to evaluate functional recov-
ery following sciatic nerve coaptation, showed improved
recovery of neurophysiological parameters relative to
action potential and muscle reinnervation [130]. The use
of low-level laser therapy (LLLT) was also tested with HFS
to observe the collateral repair of axons originating from
the vagus nerve to the interior of a sural nerve graft,
demonstrating that the HFS supports axonal regeneration
[131]. Cartarozzi et al. [128] also observed sciatic nerve
regeneration after combining mesenchymal stem cells and
HFS in a polycaprolactone-based tubular prosthesis after
nerve transection. CEVAP heterologous fibrin sealant
scaffold combined with cell therapy improved Schwann
cell reactivity, myelination and gait recovery.

Conclusions
Biological sealants have long been used in research to
provide a scaffold for substances and regrowth of axons
and have been employed in neurosurgery for over 20 years
without inducing damage to the nervous system [86, 101,
102, 132]. Sealant efficacy is similar or even better when
compared to sutures in most of the cases [133–137].
However, commercial sealants have the disadvantage of
using human blood that can lead to eventual transmission
of infectious diseases, necrosis, and seroma formation [2].
As to the repair of nerves, the ideal sealant must

possess specific biological, mechanical and structural
properties, while presenting minimal risk of disease
transmission, antigenicity, and toxicity. Furthermore, the
sealant should not induce fibrosis, that can lead to nerve
compression, and should not act as a barrier to axon re-
generation, thereby preserving normal axon architecture.
Adherence produced by the sealant should provide ad-
equate mechanical strength to avoid nerve rupture, pro-
viding a stable scaffold for axonal growth. Additionally,
it should be easy to handle, reducing operative time.
Taking all the above into account, the new heterologous

fibrin sealant from snake venom (HFS) represents a con-
sistent alternative, since it is produced without human
blood to avoid transmission of infectious diseases. Its for-
mulation can be customized to surgical needs; the clotting
time can be adjusted and degradation time can be con-
trolled. Moreover, HFS prevents fluid loss, promotes tissue
adhesion, reduces surgery time and decreases hemorrhage
[2, 127]. In addition, it is cheaper than commercial heter-
ologous sealants, since the technology and production
processes have been optimized [2, 4].
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Additional files

Additional file 1: Video showing loss of weight-bearing capacity following
ventral root avulsion (VRA), 12 weeks post-surgery, in the the CatWalk System.
(AVI 10692 kb)

Additional file 2: Video showing restoration of weight-bearing capacity
following ventral root avulsion (VRA) and reimplantation with the
heterologous fibrin sealant (HFS), 12 weeks post-surgery, CatWalk System.
(AVI 12966 kb)

Additional file 3: Video showing restoration of weight-bearing capacity
following ventral root avulsion (VRA) and reimplantation with commercial
fibrin sealant (FS), 12 weeks post-surgery, CatWalk System. (AVI 15923 kb)

Additional file 4: Video showing normal gait pattern evaluation in a
control animal. (AVI 17628 kb)

Additional file 5: Video showing gait pattern evaluation after neonatal
(P2) sciatic nerve axotomy followed by coaptation: sciatic nerve repair
with the heterologous (HFS) sealant. (AVI 14347 kb)

Additional file 6: Video showing gait pattern evaluation after neonatal
(P2) sciatic nerve axotomy followed by coaptation: recovery following
nerve repair using commercial fibrin sealant (FS), 12 weeks post-surgery.
(AVI 10675 kb)
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