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Abstract

Background: Vector-borne diseases are important public health issues and, consequently, in silico models that
simulate them can be useful. The susceptible-infected-recovered (SIR) model simulates the population dynamics of an
epidemic and can be easily adapted to vector-borne diseases, whereas the Hardy-Weinberg model simulates allele
frequencies and can be used to study insecticide resistance evolution. The aim of the present study is to develop a
coupled system that unifies both models, therefore enabling the analysis of the effects of vector population genetics
on the population dynamics of an epidemic.

Methods: Our model consists of an ordinary differential equation system. We considered the populations of
susceptible, infected and recovered humans, as well as susceptible and infected vectors. Concerning these vectors,
we considered a pair of alleles, with complete dominance interaction that determined the rate of mortality induced
by insecticides. Thus, we were able to separate the vectors according to the genotype. We performed three numerical
simulations of the model. In simulation one, both alleles conferred the same mortality rate values, therefore there was
no resistant strain. In simulations two and three, the recessive and dominant alleles, respectively, conferred a lower
mortality.

Results: Our numerical results show that the genetic composition of the vector population affects the dynamics of
human diseases. We found that the absolute number of vectors and the proportion of infected vectors are smaller
when there is no resistant strain, whilst the ratio of infected people is larger in the presence of insecticide-resistant
vectors. The dynamics observed for infected humans in all simulations has a very similar shape to real epidemiological
data.

Conclusion: The population genetics of vectors can affect epidemiological dynamics, and the presence of
insecticide-resistant strains can increase the number of infected people. Based on the present results, the model is a
basis for development of other models and for investigating population dynamics.

Keywords: Epidemiology, Population genetics, Tropical diseases, Insecticides, Theoretical modelling, Numerical
simulation, ODE system

Background
Vector-borne diseases represent one sixth of the sick-
nesses suffered by the global population, and more than
50% of the world is at risk of coming down with them
[1]. One of the most common vector-borne diseases is
dengue fever, as 2.5 billion people from more than 100
countries are infected with this illness [2]. Dengue is a
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febrile infectious disease caused by a virus of the fam-
ily Flaviridae, which has four distinct serotypes: DEN1,
DEN2, and DEN3 DEN4. The transmission mechanism
is through bites of female mosquitos from the genus
Aedes, especially of the species Aedes aegypti [3, 4]. Rapid
and unorganized urban growth, which is related to a
country’s development and rural flight, contributes to
mosquito proliferation and, consequently to the epidemic
of this urban disease. A serious characteristic is that Aedes
aegypti can also transmit the zika and chikungunya virus.
The triple epidemic dengue-zika-chikungunya coexists in
many endemic areas [5]. Despite all efforts, developing
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new tools and improving the existing strategies is very
important, necessary and still far from ideal.
Therefore, it is relevant to create models to simulate the

phenomenology of epidemic diseases and to understand
the respective dynamics. This kind of in silico research,
performed entirely on computer, is supposed to be very
advantageous. As mathematical modelling and numeri-
cal simulation involve no laboratorial experiments, they
imply economy of time and resources, and can even sub-
stitute pilot experiments [6]. Furthermore, as they involve
no live models, there are no bioethical restraints, so their
association with in vivo and in vitro experiments can
reduce the number of animals that would undergo stress-
ful and harmful situations [6].
The susceptible-infected-recovered (SIR) model was

firstly proposed by Kermack and McKendrick [7], and
since then many studies based on their idea have been
developed. This model enables scientists to simulate the
dynamics of a population under an epidemic of an infec-
tious disease over time. Three classes of individuals are
considered (Fig. 1): susceptible, those who are at risk of
contracting the disease; infected, those people who have
the pathogen in their organism and are able to transmit
it; and recovered, those who have been cured and are
immune to the illness [7]. The original SIR model focuses
only on host-to-host transmission [7]. However, there is a
useful class of SIR models to study vector-borne diseases
[8]. For instance, Bailey [9] described the susceptible-
infected-recovered/susceptible-infected (SIRSI) model, in
which the host population is divided into susceptible,
infected and recovered, and the vector population into
susceptible and infected.
Another important field of research related to vector-

borne diseases is population genetics, specifically stud-
ies regarding the selection of insecticide-resistant vector
strains [10]. Population genetics is the branch of biology
that investigates frequencies of alleles and genotypes in
populations [11]. Resistant strains of vectors are those that
resist and survive the effects of insecticides, and usually
have their origin in genetic causes [12]. Positive selec-
tion of particular phenotypes, such as insecticide resis-
tance, occur because they confer a long-term survival or
reproduction rate (i.e., a greater fitness to the environ-
ment), and therefore individuals that express them have

Fig. 1 Classical SIR model scheme. The susceptible population
becomes infected, which, in turn, becomes recovered. S = susceptible;
I = infected; R = recovered

more chance of transmitting their genes to the next gen-
eration. Subsequently, the frequency of the allele which
determines resistance increases over time, and so does
the proportion of individuals that portray this gene [13].
This situation is an example of the natural selection, pro-
posed by Darwin [14]. The importance of understanding
the genetics of vector insecticide resistance is emphasized
in the Global Plan for Insecticide Resistance Manage-
ment from the World Health Organization, in which the
relevance of theoretical modelling is also highlighted [12].
In population genetics, another important concept is

the Hardy-Weinberg equilibrium. Its conditions are the
absence of evolutionary factors, including the natural
selection. To make it possible, all the allelomorphs and
genotypes must confer the same fitness, so that the allele
frequencies remain constant over time [15]. In addition,
the pattern of inheritance must beMendelian; the propor-
tion of males and females must be equal; and the popula-
tion must be panmictic and large [16]. Considering only
two alleles, the Hardy-Weinberg equilibrium is achieved
when the proportions of the genotypes remain constant
and are represented by the following equation [1]:

p2 + 2pq + q2 = 1 (1)

Where p and q are the frequencies of the dominant and
the recessive allele, respectively, and p+q = 1. p2, 2pq and
q2 are the proportions of pure dominants, heterozygotes
and pure recessives, and also sum 1.
Considering all this information, it is important to high-

light that studying the alleles which confer resistance to
the vectors might influence various aspects of control
strategies, such as the usage of insecticides [17]. For exam-
ple, in Zambia, this kind of research determined that
pyrethroids should not be used anymore in insecticide
rotation strategies for Anopheles sp. control [18]. Another
example is the work of Luz et al. [19], in which mathe-
matical simulations were used to determine the efficiency
of insecticide control against A. aegypti and to study the
evolution of insecticide resistance. In the model of Luz
et al. [19], it is considered that the insecticide resistance
is linked to one locus with two alleles, so that A. aegypti
is divided into three groups according to the genotype.
The incorporation of population genetics into math-
ematical models can be useful for investigation of
other aspects as well. For example, Schechtman and
Souza [20] developed a deterministic mathematical model
based on A. aegypti that considers both the con-
cept of Hardy-Weinberg equilibrium and an insecti-
cide resistance gene with Mendelian inheritance pattern.
In the research of Schechtman and Souza [20], compu-
tational simulations were performed to investigate per-
sistence of vector insecticide resistance and reversion to
insecticide susceptibility. Both models might be valuable
tools for public health organizations that are responsible
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for control of vector-borne diseases. However, few stud-
ies have investigatedmathematical models that couple SIR
models and population genetics.
In this study, we propose a mathematical model of

ordinary differential equations that represents a vector-
borne disease epidemic and connects the main ideas of
SIR mathematical models and population genetics. Our
model is based on arboviral diseases, specially chikun-
gunya, dengue and yellow fever. Using this approach, we
considered the possibility of splitting the vector popula-
tion according to the genotype into three groups, each
of them with different characteristics, represented by dis-
tinct values of biological parameters. In our case, we
consider different mortality values. Therefore, it is possi-
ble to simulate the variation of the genetic composition
of vector population over time. There are two primary
aims of this study: 1. To investigate whether the dom-
inance of an insecticide resistance gene influences the
epidemics dynamics 2. To create a model that inte-
grates epidemiology and population genetics, from which
more sophisticated models and new approaches can be
developed.

Methods
We took into account infectious diseases that affect
humans and are transmitted by an insect vector, specially
arboviral diseases, such as yellow fever and chikungunya.

General assumptions
First of all, in order to better understand our model,
the assumptions we made for its development should be
mentioned:

• Assumption 1: The breeding in the populations is
random, i.e., all the individuals have the same chance
of reproduction and they mate with any other
individual in the population with the same
probability;

• Assumption 2: The disease is transmitted only
horizontally. Vertical transmission occurs in real
situations, but we disregarded it in order to present a
clearer model;

• Assumption 3: There are no evolutionary factors
except for the biological selection (we disregard
genetic drift and mutation, for instance), because of
the same reason presented in the previous
assumption;

• Assumption 4: The lifetime span of the vectors is not
long enough for the recovery of an infected insect;

• Assumption 5: There are no immigrants or
emigrants in the populations considered, since
considering human mobility would imply additional
features, such as separation of population into patches
[21], which is not the focus of this investigation.

Development of the model
Human populations
In our model, we considered both the populations of
humans and vectors. The humans were divided into sus-
ceptible, infected and recovered (Fig. 2). New human
individuals are introduced into the susceptible population
according to expression c · Nh, in which c is the birth rate
andNh is the total human population. Susceptible humans
are infected when they are bitten by an infected vec-
tor, which happens at a probability βh. Infected humans
recover at a rate γ , and the human mortality rate is μh,
which does not vary with the compartment considered.

Population genetics
We take into account a pair of alleles in the vector
population. These alleles determine the presence or not
of insecticide resistance, and, consequently, the value
of the animal’s mortality rate. They hold an interaction of
complete dominance. We represented the recessive allelo-
morph by a and the dominant one by A. We calculated the
frequency of each allele by [22]:

f (a) = q = 2Naa + NAa
2NT

(2)

f (A) = p = 2NAA + NAa
2NT

(3)

whereNaa,NAa,NAA andNT are the populations of reces-
sive homozygotes, heterozygotes, dominant homozygotes,
and the total population, respectively.
Considering the frequencies of the alleles, the probabil-

ity of there being a gamete portraying allele A is p and
allele a is q. Therefore, the probability of the formation

Fig. 2 Scheme of the SIRSI model considering genetics aspects of the
vector. AA, Aa and aamean dominant homozygotes, heterozygotes
and recessive homozygotes, respectively, for the Susceptible (S)
and Infected (I) mosquito populations. Sh , Ih and Rh are the susceptible,
infected and susceptible compartments for humans. Vectors become
infected when they interact with an infected host; and susceptible
humans become infected when they are bitten by an infected vector
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of each genotype during fertilization is given in Table 1
below.
Consequently, the proportion of the genotypes aa, Aa

and AA in the next generation in time t + 1 can be calcu-
lated by p2, 2pq and q2, in this order. Considering that θ

is the vector birth rate and that the total population in the
next generation is equal to NT · θ , we have the following
equations:

Nt+1
aa = q2θNt

T + Nt
aa (4)

Nt+1
Aa = 2pqθNt

T + Nt
Aa (5)

Nt+1
AA = p2θNt

T + Nt
AA (6)

Where Nt
T = Nt

aa + Nt
Aa + Nt

AA in time t and N0
T =

N0
aa + N0

Aa + N0
AA. As we consider that there are no verti-

cal transmission, all new individuals are introduced in the
susceptible compartment therefore:

St+1
aa = q2θNt

T (7)
St+1
Aa = 2pqθNt

T (8)
St+1
AA = p2θNt

T (9)

Vector populations
As we considered a pair of alleles for the vector
population, we could separate the vector population
into recessive homozygotes, heterozygotes and dominant
homozygotes. Each of these compartments were subdi-
vided into susceptible and infected (Fig. 2). New indi-
viduals are introduced into the populations through the
susceptible compartment, according to what is described
in the previous item. Susceptible insects become infected
when they bite infected humans, with a probability βv.
This way, βv represents the proportion of vectors that
effectively gets infected. This parameter is particularly
useful because field studies demonstrate that only a small
percentage of vectors gets infected with the pathogen [23].
The mortality rate has two components: the natural

mortality rate (μN ), whose value is equal for all vector
groups considered here; and the insecticide-induced mor-
tality rate (μI ), whose value was smaller for the resistant
strain and greater for the wild type. Eq. 10 shows the com-
ponents of the total mortality rate. We considered μaa,
μAa and μAA as the total mortality rates for recessive
homozygotes, heterozygotes and dominant homozygotes,

respectively. As allele A is dominant over a and we con-
sider a complete dominance interaction, μAa and μAA will
always have the same value.

μT = μN + μI (10)

This way, according to our system, the increase in
susceptible vector populations is dependent of allele fre-
quencies and total vector population, and limited by a
carrying capacity (K ). The decrease of susceptible vector
population is proportional to its own size and the per-
centage of vectors that become infected. On the other
hand, the increase in infected vector populations is depen-
dent on the proportion of infected humans

(
Ih
Nh

)
and on

the number of susceptible vectors with the correspon-
dent genotype (Sv). In contrast, the decrease of infected
vector populations is proportional only to its own size,
independently of other populations.

The system of ordinary differential equations
Our model was based on the one proposed by Santos [21].
The variables and parameters are summarized in Tables 2,
3 and 4. Our mathematical model can be represented by
the following system of ordinary differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sh
dt = cNh −

(
βhIv
Nh

+ μh
)
Sh

Ih
dt = βhIv

Nh
Sh − (γ + μh) Ih

Rh
dt = γ Ih − μhRh
Saa
dt = q2θNv

(
1 − Nv

K

)
−

(
βvIh
Nh

+ μaa
)
Saa

Iaa
dt = βvIh

Nh
Saa − μaaIaa

SAa
dt = 2pqθNv

(
1 − Nv

K

)
−

(
βvIh
Nh

+ μAa
)
SAa

IAa
dt = βvIh

Nh
SAa − μAaIAa

SAA
dt = p2θNv

(
1 − Nv

K

)
−

(
βvIh
Nh

+ μAA
)
SAA

IAA
dt = βvIh

Nh
SAA − μAAIAA

(11)

Computational simulations
The simulations were made using the software MatLab®.
We ran the discrete form of system 11, which was obtained
through the Euler method (Additional file 1). The time,
which was measured in days, varied from 0 to 100, and
�t was equal to 0.1. The parameter values were obtained
from Santos [21] and are shown in Tables 2 and 4. The
initial values of the variables are shown in Table 3. We
assume the initial vector population is the double of the

Table 1 Probability of formation of genotypes in the next generation

Probability of a gamete portraying A = p Probability of a gamete portraying a = q

Probability of a gamete portraying
A = p

Probability of the formation of genotype
AA = p · p

Probability of the formation of genotype
Aa = p · q

Probability of a gamete portraying
a = q

Probability of the formation of genotype
Aa = p · q

Probability of the formation of genotype
aa = q · q
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Table 2 Biological parameter values and meanings

Parameter Meaning Value Parameter Meaning Value

C Human birth rate 0.457 · 10−4 μaa Recessive homozygote vector
mortality rate

Table 4

μh Human mortality rate 0.457 · 10−4 μAa Heterozygote vector mortality
rate

Table 4

βh Probability of vector-human
transmission

0.4 μAA Dominant homozygote vector
mortality rate

Table 4

γ Human recovery rate 0.121 βv Probability of human-vector
transmission

0.4

θ Vector oviposition rate 6.353 K Carrying capacity 2 · 105
Values obtained in Santos [21]

human population, according to the work of Menach
et al. [24]. The algorithm of the simulation can be found
in Additional file 2.
According to these values, the initial values of p and q

would be 0.375 and 0.625, respectively.
A total of three main simulations were made, each one

with different insecticide resistance situations. In the first
one, we considered that both alleles (a and A) conferred
a mortality rate of 0.25day−1. In this case, we intended
to simulate the Hardy-Weinberg equilibrium conditions,
in which all the individuals of a population have the
same chance of surviving and reproducing, regardless
of its genotype. This situation would also represent the
absence of an insecticide-resistant strain, i.e., a popu-
lation totally susceptible to insecticides. In the other
two simulations, we aimed to simulate the presence of
an insecticide-resistant strain and the natural selection,

which is characterized by differential reproduction and
survival of organism. For this reason, in the second sim-
ulation, the recessive allele attributed a smaller mortality
value, while the dominant allelomorph conferred a higher
rate. Finally, the last simulation was similar, but then the
dominant allele conferred a greater fitness. The values of
the mortality rates can be seen in Table 4.
We also did four other minor simulations. One of them

was similar to simulation 1, but the time ranged from
t = 0 to t = 500. The other three simulations were analo-
gous to the three main simulations, except by the fact that
the initial values of variables were ten times smaller than
the values shown in Table 3, and �t = 0.01. These simu-
lations with smaller populations are referred as 1s, 2s and
3s. 1s, 2s and 3s have, respectively, no insecticide-resistant
gene, recessive insecticide resistance gene and dominant
insecticide resistance gene.

Table 3 Variable values and meanings

Variable Meaning Initial value Variable Meaning Initial value

Sh Human susceptible popu-
lation

9 · 103 Saa Recessive homozygote vector sus-
ceptible population

4.75 · 103

Ih Human infected popula-
tion

2 · 102 Iaa Recessive homozygote vector
infected population

4.75 · 103

Rh Human recovered popula-
tion

3 · 102 Naa Recessive homozygote vector total
population

9.5 · 103

Nh Human total population 9.5 · 103 SAA Dominant homozygote vector sus-
ceptible population

2.375 · 103

SAa Heterozygote vector sus-
ceptible population

2.375 · 103 IAA Dominant homozygote vector
infected population

2.375 · 103

IAa Heterozygote vector
infected population

2.375 · 103 NAA Dominant homozygote vector total
population

4.75 · 103

NAa Heterozygote vector total
population

4.75 · 103 Nv Vector total population 1.9 · 104

Iv Infected vector population 3 · 104 faa Frequency of recessive homozy-
gotes

Naa
Nv

fAa Frequency of
heterozygotes

NAa
Nv

fAA Frequency of dominant homozy-
gotes

NAA
Nv

q Frequency of recessive
allele

Eq. 2 p Frequency of dominant allele Eq. 3
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Table 4 Values of mortality rates for the three simulations

Allele Genotypes in which the
allele expresses

Mortality rate (day−1)

Simulation 1 Simulation 2 Simulation 3

Recessive (a) aa 0.25 0.01 0.25

Dominant (A) Aa, AA 0.25 0.25 0.01

In the outputs of all simulations, genotypes AA and Aa
were represented together as A_, since they express the
same phenotype.

Results
Simulation 1
Figures 3 and 4 show the graphs obtained from simulation
1, in which we aim to represent the Hardy-Weinberg equi-
librium conditions, and a population without resistant
strains. In Fig. 3a, the human populations are represented.
The number of susceptible humans decreases until it
reaches the value zero, while the population of recovered

humans increases almost linearly. On the other hand, the
population of infected humans raised to a peak at time 28
and then diminished. In relation to the vectors (Fig. 3b, c
and d), their populations exhibited both periods of growth
and decline. The proportion of A_ vectors were always
greater than the proportion of recessive homozygotes,
except in the initial time, when their values were the same.
The frequencies of the dominant (p = 0.375) and the

recessive allele (q = 0.625) remained constant during the
whole time considered, as expected for the absence of evo-
lution factors. According to Fig. 4b, the genotype frequen-
cies varied very fast at the beginning of the simulation, and

Fig. 3 Results of simulation 1. a Susceptible (blue), infected (green) and recovered humans (red). b Infected aa (blue) and A_ (green) vectors.
c Susceptible aa (blue) and A_ (green) vectors. d Susceptible (blue), infected (green) and total (red) populations of vectors disregarding the genetic
separation. c = 0.457 · 10−4, μh = 0.457 · 10−4, βh = 0.4, γ = 0.121, θ = 6.353, βv = 0.4, K = 2 · 105, μaa = μAa = μAA = 0.25, Sh = 9 · 103,
Ih = 2 · 102, Rh = 3 · 102, Nh = 9.5 · 103, SAa = 2.375 · 103, IAa = 2.375 · 103, NAa = 4.75 · 103, Saa = 4.75 · 103, Iaa = 4.75 · 103, Naa = 9.5 · 103,
SAA = 2.375 · 103, IAA = 2.375 · 103, NAA = 4.75 · 103, Iv = 3 · 104, Nv = 1.9 · 104. X axis represents time (days) and Y axis represents number of
individuals. Image produced with MatLab®
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Fig. 4 Results of simulation 1 (continued). a Allele frequencies of a (green) and A (blue). b Genotype frequencies of aa (blue), Aa (red) and AA (green).
c = 0.457 · 10−4, μh = 0.457 · 10−4, βh = 0.4, γ = 0.121, θ = 6.353, βv = 0.4, K = 2 · 105, μaa = μAa = μAA = 0.25, Sh = 9 · 103, Ih = 2 · 102,
Rh = 3 · 102, Nh = 9.5 · 103, SAa = 2.375 · 103, IAa = 2.375 · 103, NAa = 4.75 · 103, Saa = 4.75 · 103, Iaa = 4.75 · 103, Naa = 9.5 · 103, SAA = 2.375 · 103,
IAA = 2.375 · 103, NAA = 4.75 · 103, Iv = 3 · 104, Nv = 1.9 · 104. X axis represents time (days) and Y axis represents freqquency.Image produced with
MatLab®

then they started to increase or decrease very slowly. The
Hardy-Weinberg equilibrium would be achieved when:

f (aa) = q2 = 0.390625
f (Aa) = 2 · p · q = 0.468750

f (AA) = p2 = 0.140625

According to another simulation with the same condi-
tions, but in a longer time frame, the Hardy-Weinberg
equilibrium is achieved at t = 488. Note that f (aa) +
f (Aa) + f (AA) = 1.

Simulation 2
The results of simulation 2, in which the recessive allele
conferred a greater fitness, are shown in Figs. 5 and 6.
The recessive homozygotes represent the resistant strain,
which is positively selected.
Regarding the humans (Fig. 5a), the susceptible popu-

lation decreased during the whole time considered, until
the zero value. The infected population increased until
time 27 of the simulation and then reduced up to the
end of simulation. Finally, the recovered population had
an approximately linear growth. This human dynamics is
approximately similar to simulation 1, although the val-
ues vary lightly. On the other hand, the vector population
showed different dynamics (Fig. 5b and c). The dynam-
ics of the susceptible vectors (Fig. 5c) can be split into
two moments. In the first one, the populations increased
quickly and the proportion of A_ individuals was greater
than that of aa individuals. At a second moment, the
number of A_ and aa susceptible vectors decreased and
the proportion of pure recessives overcame the propor-
tion of the other genotypes. The number of pure recessive
infected vectors all increased over the time, while the
quantity of infected individuals that carry the dominant
allele had periods of growth and decline.

The recessive allele tended to fixation while the fre-
quency of the dominant one decreased over time (Fig. 6a).
According to another simulation with the same condi-
tions, but a bigger time, fixation occurs when t = 722.
Despite the beginning of the simulation, the frequency
of the genotype aa increased, while the frequency of the
others decreased.

Simulation 3
The graphs in Figs. 7 and 8 show the results of the
third simulation, in which the dominant allele conferred
insecticide resistance (i.e., a smaller mortality value),
therefore the resistant strain consists of AA and Aa indi-
viduals. Regarding the human population (Fig. 7a), the
number of susceptible individuals decrease until reach-
ing the value zero, while the quantity of recovered grew
during the whole time considered. On the other hand,
the infected population increased to a maximal at day
27 and then started to go down. Concerning the vec-
tors, the dominant homozygotes and heterozygotes were
more numerous than the recessive homozygotes through-
out the whole simulation (Fig. 7b and c), except for the
initial time. As for the infected compartment (Fig. 7b),
the A_ compartment increased, while the group of pure
recessives barely varied over the whole time considered.
The susceptible vectors (Fig. 7) had an initial period
of growth followed by a period of decrease, and the
A_ susceptible vectors were more numerous than the
aa ones. The population of susceptible vectors grew
until day 11, when it started to decrease (Fig. 7d),
and then was eventually overcome by the infected
population.
Finally, regarding the allelic frequencies, the dominant

allele tended to fixation, while the recessive tended to zero
(Fig. 8a). In an attempt to find when the allele A would
fix in the population, we did a similar computational
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Fig. 5 Results of simulation 2. a Susceptible (blue), infected (green) and recovered humans (red). b Infected aa (blue) and A_ (green) vectors. c
Susceptible aa (blue) and A_ (green) vectors. d Susceptible (blue), infected (green) and total (red) populations of vectors disregarding the genetic
separation. c = 0.457 · 10−4, μh = 0.457 · 10−4, βh = 0.4, γ = 0.121, θ = 6.353, βv = 0.4, K = 2 · 105, μaa = 0.01, μAa = μAA = 0.25, Sh = 9 · 103,
Ih = 2 · 102, Rh = 3 · 102, Nh = 9.5 · 103, SAa = 2.375 · 103, IAa = 2.375 · 103, NAa = 4.75 · 103, Saa = 4.75 · 103, Iaa = 4.75 · 103, Naa = 9.5 · 103,
SAA = 2.375 · 103, IAA = 2.375 · 103, NAA = 4.75 · 103, Iv = 3 · 104, Nv = 1.9 · 104. X axis represents time (days) and Y axis represents number of
individuals.Image produced with MatLab®

simulation over time varying from 0 to 100000, but even
in these conditions the fixation was not yet reached.
Figure 8b shows that the frequencies of heterozygotes and
pure dominants, which had a bigger fitness, increased;
while the frequency of pure recessive, that had a smaller
fitness, decreased.

Simulations with bigger time interval and smaller
population
Figure 9 shows the results for the simulation in interval
0 < t < 500. Unlike the preceding simulations, it enables
us to see that the infected human population almost
reaches the value zero, when all the human compartments

Fig. 6 Results of simulation 2 (continued). a Allele frequencies of a (green) and A (blue). b Genotype frequencies of aa (blue), Aa (red) and AA (green).
c = 0.457 · 10−4, μh = 0.457 · 10−4, βh = 0.4, γ = 0.121, θ = 6.353, βv = 0.4, K = 2 · 105, μaa = 0.01, μAa = μAA = 0.25, Sh = 9 · 103, Ih = 2 · 102,
Rh = 3 · 102, Nh = 9.5 · 103, SAa = 2.375 · 103, IAa = 2.375 · 103, NAa = 4.75 · 103, Saa = 4.75 · 103, Iaa = 4.75 · 103, Naa = 9.5 · 103, SAA = 2.375 · 103,
IAA = 2.375 · 103, NAA = 4.75 · 103, Iv = 3 · 104, Nv = 1.9 · 104. X axis represents time (days) and Y axis represents freqquency. Image produced with
MatLab®
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Fig. 7 Results of simulation 3. a Susceptible (blue), infected (green) and recovered humans (red). b Infected aa (blue) and A_ (green) vectors.
c Susceptible aa (blue) and A_ (green) vectors. d Susceptible (blue), infected (green) and total (red) populations of vectors disregarding the genetic
separation. c = 0.457 · 10−4, μh = 0.457 · 10−4, βh = 0.4, γ = 0.121, γ = 6.353, βv = 0.4, K = 2 · 105, μaa = 0.25, μAa = μAA = 0.01, Sh = 9 · 103,
Ih = 2 · 102, Rh = 3 · 102, Nh = 9.5 · 103, SAa = 2.375 · 103, IAa = 2.375 · 103, NAa = 4.75 · 103, Saa = 4.75 · 103, Iaa = 4.75 · 103, Naa = 9.5 · 103,
SAA = 2.375 · 103, IAA = 2.375 · 103, NAA = 4.75 · 103, Iv = 3 · 104, Nv = 1.9 · 104. X axis represents time (days) and Y axis represents number of
individuals. Image produced with MatLab®

practically arrive at a stable value (i.e., reaching the
equilibrium).
On the other hand, Fig. 10 shows the dynamics of

humans populations of 1s, 2s, and 3s. The results show a
slight difference between them. In the presence of an allele

that confers resistance, the number of infected people is
bigger and the number of susceptible, smaller. Conversely,
when there are no resistant strains, the number of infected
humans is smaller and the susceptible compartment is
bigger.

Fig. 8 Results of simulation 3 (continued). a Allele frequencies of a (green) and A (blue). b Genotype frequencies of aa (blue), Aa (red) and AA (green).
c = 0.457 · 10−4, μh = 0.457 · 10−4, βh = 0.4, γ = 0.121, θ = 6.353, βv = 0.4, K = 2 · 105, μaa = 0.25, μAa = μAA = 0.01, Sh = 9 · 103, Ih = 2 · 102,
Rh = 3 · 102, Nh = 9.5 · 103, SAa = 2.375 · 103, IAa = 2.375 · 103, NAa = 4.75 · 103, Saa = 4.75 · 103, Iaa = 4.75 · 103, Naa = 9.5 · 103, SAA = 2.375 · 103,
IAA = 2.375 · 103, NAA = 4.75 · 103, Iv = 3 · 104, Nv = 1.9 · 104. X axis represents time (days) and Y axis represents freqquency. Image produced with
MatLab®
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Fig. 9 Simulation with the same conditions to first simulation, with
time varying from 0 to 500. Legend: Susceptible (blue), infected
(green) and recovered humans (red). c = 0.457 · 10−4,
μh = 0.457 · 10−4, βh = 0.4, γ = 0.121, θ = 6.353, βv = 0.4,
K = 2 · 105, μaa = μAa = μAA = 0.25, Sh = 9 · 103, Ih = 2 · 102,
Rh = 3 · 102, Nh = 9.5 · 103, SAa = 2.375 · 103, IAa = 2.375 · 103,
NAa = 4.75 · 103, Saa = 4.75 · 103, Iaa = 4.75 · 103, Naa = 9.5 · 103,
SAA = 2.375 · 103, IAA = 2.375 · 103, NAA = 4.75 · 103, Iv = 3 · 104,
Nv = 1.9 · 104. X axis represents time (days) and Y axis represents
number of individuals. Image produced with MatLab®

Discussion
In this study, we propose a SIR model that considers the
population genetics of vector insecticide resistance. We
did three computational simulations: in one of them, all
vectors of the population had the same insectide-induced
mortality, so that there was no selection and no resistant
strain. In the second, the recessive homozygotes vec-
tors were resistant to an insecticide, and therefore they
had a smaller mortality rate and a bigger fitness. In the
third, those who carried the dominant allele had insecti-
cide resistance. Therefore, they had more probability of

passing their genes to the next generation. Our model
is based on the biology of several vector-borne diseases
such as dengue fever, yellow fever and chikungunya. All
of them are caused by viruses of the genus Flavivirus and
are transmitted by Aedes spp., especially Aedes aegypti
[25–27].
These tropical neglected diseases are extremely impor-

tant nowadays: in Brazil, until the 21st epidemiological
week of 2016, almost 1.3 million people came down with
dengue and 122762 probable cases of chikungunya were
registered [28]; in one year, 60000 people died because
of yellow fever in Sub-Saharian Africa [29]. However, the
present model must be interpreted with caution because
it disregards important factors, such as seasonal varia-
tion of temperature [19], different life stages of the vector
[19, 20], spatial distribution of populations [21] and the
existence of various strains of a pathogen [30]. Therefore,
it is important to bear in mind that the computational
simulations may fail in accurately representing all aspects
of a real epidemics. Notwithstanding these restrictions,
our model is important for understanding the influence
of insecticide resistance genetics on dynamics of an epi-
demics, without influence of other factors. In addition, it
may serve as a basis for the development of more complex
and realistic approaches.
In our model, we considered a pair of allelomorphs

with complete dominance interaction and Mendelian
inheritance, which affected the mortality rate of the
vector. Using this approach, we intended to simulate
a genetic-induced insecticide resistance. Several similar
real cases are described in the literature. According to
Saavedra-Rodriguez et al. [31], an isoleucine replace-
ment in codon 1016 of voltage-gated sodium channel

Fig. 10 Smaller initial values. Simulations with the same conditions as the 1st, 2nd and 3rd simulations, but with initial values of variables ten times
smaller than shown in Table 2. a complete charts of the simulation. The dashed square marks the region represented by the figure on the right.
b zoom on the left figure. Dashed lines = susceptible humans; continuous lines = infected humans; blue lines = conditions similar to the first
simulation; yellow lines = conditions similar to the second simulation; green lines = conditions similar to the third simulation. Graphics produced on
Microsoft Excel® with data obtained on MatLab® simulations. X axis represents time (days) and Y axis represents number of individuals
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transmembrane protein gene of Aedes aegypti is linked
to knockdown resistance to pyrethroids, which is a very
common type of insecticide. The allele that contains
this mutation is recessive and increased in frequency
when under insecticide selection [31]. Another interest-
ing example is found in the study by Bonin et al. [32], who
researched some alleles in Aedes aegypti related to resis-
tance to the bioinsecticide Bacillus thuringiensis israe-
lensis. These allelomorphs have dominant characteristics.
However, the genes considered in that study [32] are poli-
genes, i.e., they determine a quantitative character, which
is different from our mathematical model, which con-
siders that insecticide resistance is qualitative. There are
many different mutations of this kind in several mosquito
populations around the world [33].
Analyzing Figs. 3d, 5d and 7d, it is clear that the total

vector population is smaller in the first simulation than in
the others. This can be easily explained by the fact that
more individuals are removed there, since the mean mor-
tality rate is bigger because all vectors have a mortality
value of 0.25day−1. In contrast, in the other two simu-
lations, there is a portion of the population with μT =
0.01day−1, and therefore the mean mortality is smaller
and the total number of vectors is bigger.
Another interesting observation to make about Figs. 3d,

5d and 7d is that when there is an insecticide-resistant
strain, the proportion of vectors infected with the
pathogen is bigger. In addition, this proportion is even
bigger when the resistance is caused by a dominant allele
instead of a recessive one. This can be easily seen in
Fig. 11. One possible explanation for this phenomenon is
that when there is a resistant strain, the mean mortality
rate is smaller, as stated above in this section. Therefore,
less susceptible vectors die, and this compartment become
more numerous.
According to the expression βvIh

Nh
· Sv of system 11,

the bigger the number of susceptible vectors, the more

they become infected and the bigger the compartment
of infected vectors. The larger proportion of infected
vectors in the presence of resistance was also observed
in laboratory experiments in vivo. For instance, Labout
et al. [34] studied three strains of Anopheles gambiae, the
malaria vector: all of them had the same genetic back-
ground, despite the fact that one group was susceptible
to insecticides, another had a mutation that conferred
resistance to organophosphates and carbamates; and the
third had a knockdown mutation that determined resis-
tance to pyrethroids and DDT. The mosquitoes were fed
on bloodwith Plasmodium falciparum; the protozoan that
causes malaria, and then the prevalence of P. falciparum
infection in the vectors strains was measured. They found
that the prevalence was higher in insecticide resistant
strains than in the susceptible one. Alout et al. [34] explain
this phenomenon through a molecular mechanism, while
our present paper justify it through population dynamics.
Probably, during an epidemic, both mechanisms influence
the proportion of infected vectors.
When the outputs of the three simulations are com-

pared, a slight difference between the human population
dynamics can be observed. This difference is more visible
when there are less individuals (Fig. 10). It can be noted
that the number of infected people is greater in pres-
ence of resistant vectors, and smaller in their absence. The
inverse is valid for susceptible humans. This might hap-
pen because of the larger proportion of infected vectors
in simulations 2s and 3s and smaller in simulation 1s, in
conformity to the statements of the previous paragraph.
The more vectors are infected, the faster humans become
infected. The bigger is the compartment of infected peo-
ple, the smaller is the compartment of susceptible people.
Although we diminished the populations in the sim-

ulation in Fig. 10 and it had interesting results, in real
situations the natural selection becomes less relevant in
small populations, in which the genetic drift is the most

Fig. 11 Total infected (continuous lines) and total susceptible (dashed lines) vectors in simulations 1, 2 and 3. Blue = First simulation; yellow = second
simulation; green = third simulation. Graphics produced on Microsoft Excel®, but with data obtained on MatLab® simulations. X axis represents time
(days) and Y axis represents number of individuals
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actable evolution factor [15]. For this reason, we con-
sidered greater variable values in the other simulations,
even though the effect in humans was more subtle. One
can argue that the differences between the simulations of
Fig. 10 are a bias due to the small size of populations.
As a matter of fact, in vivo and in vitro approaches that
involve small samples usually face this issue. However,
our in silico study used only non-stochastic mathemati-
cal tools, so that the results are always exact or depends
only on the variables and parameters considered. In order
to confirm this, the computational simulations were per-
formed several times, and all of them presented the same
results. Therefore, the differences in human populations
did not occur because of the small population size, but
because of the genetics of the vector insecticide resistance.
Taken together, the results of simulations 1, 2, 3, 1s,

2s and 3s suggest that the genetics of insecticide resis-
tance have stronger effect on the vector population than
in the human population. This result may be explained
by the fact that the insecticide resistance gene have direct
effect on the vectors populations, but only indirectly influ-
ences the human populations. As a matter of fact, the
insecticide resistance have direct effect on vector mor-
tality rate, which influences the size of susceptible and
infected vector populations. In turn, changes in vector
infected population causes changes in human susceptible
and infected populations, that are also restrained by βh
and Nh. Indeed, in simulations 2, 3, 2s and 3s, the differ-
ences in genotype frequencies among the simulations can
be noticed in the first days of simulation (Figs. 6b, 8b),
the differences in size of vector infected populations can
be seen from day 20 on (Fig. 11), while the differences in
size of human infected populations only can be noticed
from day 80 on (Fig. 10b). Overall, this information show
that the genetics of the vectors affects the epidemiological
dynamics of a vector-borne disease as to several important
aspects. Therefore, the present model could be an impor-
tant start point for investigating population dynamics in
epidemics.
Another relevant observation is that, in all simulations

of our model, the populations of susceptible humans
always decreased and reached zero, and never went up.
This happens because of the combination of two factors:
(1) the value of the human birth rate is equal to the value
of the human mortality rate, and (2) the immunity of

the recovered was lifelong, so they would never become
susceptible again. This situation could be reversed by con-
sidering different values of c and μh, but it was decided to
use the same values for both parameters in order to main-
tain constant the size of total human population during
all the time of simulation. It was decided to consider life-
long immunity because this characteristic is observed for
important vector-borne diseases such as chikungunya [35]
and for each dengue serotype [36].
It is interesting to note that the curve obtained for

infected humans in all three computational simulations
has a very similar shape to many line graphs made with
real epidemiological data. For example, we can cite the
Brazilian dengue epidemics in the years of 2013, 2014,
and 2015, whose line graphs for the number of infected
people over time can be found in the epidemiological
bulletins of the Brazilian Secretary of Health Vigilance
[28]. In all of them, during the rainy season, the number
of infected people increases until it reaches a peak, and
then it starts to decrease, similar to the outputs obtained
here. The same trend is observed in the number of yellow
fever suspect cases in Angola, from December, 2015 to
March, 2016 [2].
Regarding the allele frequencies, in all simulations, the

initial p and q were 0.375 and 0.625, respectively. How-
ever, these variables changed very differentially according
to the simulation. As stated in the results of simulation
1, in the first simulation, the frequencies did not change
because of the lack of evolutionary factors. Comparing
simulations 2 and 3, we can infer that the resistance
allele fixes faster when this allele is recessive than when
it is dominant: the time it takes to reach the frequency
100% is longer when A confers resistance; and the vari-
ation of frequency between 0 < t < 100 is smaller
in the third simulation (Table 5). According to Freeman
and Herron [15], this happens because, when a domi-
nant allele is positively selected, the recessive allele that
confer a smaller fitness is maintained through the het-
erozygotes, that “hide” the recessive alleles, since they
carry them but express the phenotype of bigger fitness.
When the recessive allelomorph is positively selected, the
situation is different: the heterozygotes have a smaller
fitness despite the fact they carry the two forms of the
gene, and therefore they tend to be eliminated from the
population.

Table 5 Initial and final allele frequencies in the simulation

Simulation p q

Initial Final Initial-final Initial Final Initial-final

1st 0.375 0.375 0 0.625 0.625 0

2nd 0.375 0.081 0.294 0.625 0.919 0.294

3rd 0.375 0.599 0.224 0.625 0.401 0.224
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The frequencies of the genotypes in simulations 2 and
3, at the beginning of the time considered, have similar
dynamics to the first simulation. After this initial period,
they start to vary according to the selective pressure.

Conclusion
In conclusion, the model presented in this work exhib-
ited results in conformation with the literature, and the
numerical results show that the genetics of the vectors
do influence human population dynamics. The compu-
tational simulations have shown that the presence of an
insecticide resistance gene is related to a bigger number of
infected humans and vectors. The numerical investigation
has also shown that this aspect depends on the inheritance
pattern of the gene, since a dominant insecticide resis-
tance gene implies in an even greater number of infected
people and vectors.
This study does not consider factors such as differ-

ent life stages of vectors and the possibility of diverse
serotypes of a pathogen. Notwithstanding these restric-
tions, our model could be a basis for the development of
more sophisticated epidemiological models that consid-
ers insecticide resistance genetics. These, in turn, could
be used for monitoring diseases such as yellow fever and
predicting trends of epidemics. This way, the present
investigation open new perspectives for further studies.
For example, our model could be a starting point to cal-
culate the optimum control in which insecticides are used
in a manner that minimizes the evolution of resistance in
vector population.
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