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Abstract

Background: Cnidarians produce toxins, which are composed of different polypeptides that induce pharmacological
effects of biotechnological interest, such as antitumor, antiophidic and anti-clotting activities. This study aimed to
evaluate toxicological activities and potential as antitumor and antiophidic agents contained in total extracts from five
cnidarians: Millepora alcicornis, Stichodactyla helianthus, Plexaura homomalla, Bartholomea annulata and Condylactis
gigantea (total and body wall).

Methods: The cnidarian extracts were evaluated by electrophoresis and for their phospholipase, proteolytic, hemorrhagic,
coagulant, fibrinogenolytic, neuromuscular blocking, muscle-damaging, edema-inducing and cytotoxic activities.

Results: All cnidarian extracts showed indirect hemolytic activity, but only S. helianthus induced direct hemolysis and
neurotoxic effect. However, the hydrolysis of NBD-PC, a PLA2 substrate, was presented only by the C. gigantea (body wall)
and S. helianthus. The extracts from P. homomalla and S. helianthus induced edema, while only C. gigantea and S. helianthus
showed intensified myotoxic activity. The proteolytic activity upon casein and fibrinogen was presented
mainly by B. annulata extract and all were unable to induce hemorrhage or fibrinogen coagulation. Cnidarian
extracts were able to neutralize clotting induced by Bothrops jararacussu snake venom, except M. alcicornis. All
cnidarian extracts were able to inhibit hemorrhagic activity induced by Bothrops moojeni venom. Only the C. gigantea
(body wall) inhibited thrombin-induced coagulation. All cnidarian extracts showed antitumor effect against Jurkat cells,
of which C. gigantea (body wall) and S. helianthus were the most active; however, only C. gigantea (body wall) and M.
alcicornis were active against B16F10 cells.

Conclusion: The cnidarian extracts analyzed showed relevant in vitro inhibitory potential over the activities induced by
Bothrops venoms; these results may contribute to elucidate the possible mechanisms of interaction between cnidarian
extracts and snake venoms.
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Background
Marine organisms, which comprise half of the total global
biodiversity, have been recognized as the largest remaining
reservoir of novel compounds to be evaluated for drug ac-
tivity [1–6]. Animals belonging the phylum Cnidaria are
of great importance for studies of pharmacological and
toxicological assessments. The composition of cnidarian
venoms remains incompletely elucidated. However,
several of their compounds have been described, including
peptides, proteins, purines, quaternary ammonium com-
pounds, biogenic amines and betaines [1, 7–11].
Venoms from such animals as snakes [12–14], scorpions

[15–18], anurans [19, 20], cone snails [21, 22] and cnidar-
ians [23–25] have been used as a source of bioactive com-
pounds for the prospection of lead compounds potentially
useful for the development of new anticancer therapies
[26, 27]. This fact has provoked a growing worldwide
interest in the screening of proteins, peptides, marine nat-
ural products (MNPs) from cnidarians in order to discover
new anticancer bioactive compounds [28, 29].
The use of genomic and proteomic approaches had per-

mitted a rapid increase in the number of sequences from
cnidarians deposited in protein and gene databases [30–32].
Some of these toxins have been used for the development
of anticancer molecules. One interesting example is the
hemolytic toxin (HT) from Stichodactyla helianthus sea
anemone which was conjugated with an antibody towards
an antigen expressed on immature T lymphocytes (IOR-T6)
producing an o-hemolytic hybrid IOR-T6-HT that showed
toxicity against CEM cells expressing the IOR-T6 antigen
and non-toxic effects for K562 cells without the antigen [33].
Additionally, several marine natural products are able

to inhibit the toxic effects of snake venoms, such as ex-
tracts from Plocamium braziliense [34], Canistrocarpus
cervicornis [35] and seaweed Prasiola crispa [36]. The
marine extracts that also inhibit PLA2 activity include
manoalide [37], vidalols, and a group of terpenoids that
contain masked 1,4-dicarbonyl moieties. Furthermore,
the biotechnological potential of PLA2 inhibitors may
provide therapeutic molecular models that exert antio-
phidian activity to supplement the conventional serum
therapy against these multifunctional enzymes [38, 39].
This study aimed to evaluate toxicological activities

and their efficacy against tumor and snake-venom toxic
activities from five Caribbean Sea cnidarian species of
the hydrozoa class: Millepora alcicornis, Plexaura homo-
malla and Cnidarians of the anthozoa class: Condylactis
gigantea (total and body wall), Stichodactyla helianthus,
and Bartholomea annulata.

Methods
Materials and reagents
The synthetic fluorescent substrates Acyl 6:0 NBD
phospholipids, NBD-phosphatidylcholine (PC) and NBD-

phosphatidic acid (PA) were purchased from Avanti Polar
Lipids Inc. (USA). The reagents used in the electrophor-
esis, salts and other reagents were obtained from Sigma
Chemical Company (USA).

Cnidarian extracts
The cnidarians specimens were collected in the coast of
Havana City during a one-year period. The extracts of
corals were obtained as previously described by [40],
whereas anemone extracts were obtained according to
[41]. Protein quantitation was based on the Bradford
method (BioRad) using bovine serum albumin (BSA) as
a standard.

Animals
Adult male mice weighing 25 to 30 g were maintained
under a 12 h light-dark cycle (lights on at 07:00 h) in a
temperature-controlled environment (22 ± 2 °C) for at
least ten days prior to the experiments. Food and water
were freely available. Animal procedures were in accord-
ance with the guidelines prepared by the Committee on
Care and Use of Laboratory Animal Resources, National
Research Council, USA. The ethical aspects related to
the project were approved by the Ethics Committee on
Animal Use (No. 2012/1) and the Ethics Committee
(102/2009) for Research on Human Beings from Brazil
(CAAE: 14204413.5.0000.0011).

Electrophoresis
SDS-PAGE 12.5% (m/v) was carried out as previously
described [42]. 500 μg samples C. gigantea (body-wall),
C. gigantea (total), M. alcicornes, S. helianthus, P. homo-
malla and B. annulata were pretreated in reducing con-
ditions (SDS plus β-mercaptoethanol) at 100 °C for
5 min. Gels were stained with 0.1% Coomassie brilliant
blue R-350 in ethanol: acetic acid (5:1, v/v) for 15 min
and discolored in 10% acetic acid. The molecular mass
was estimated by interpolation from a linear logarithmic
plot of relative molecular mass versus distance of migra-
tion using standard molar mass markers (SDS7
Sigma-Aldrich).

Phospholipase activity
The Phospholipase A2 (PLA2) activity was measured
using the indirect hemolytic assay on agarose gels con-
taining red blood cells and egg yolk phospholipids [43].
The hemolytic activity was evaluated spectrophotomet-
rically using suspensions of fresh human RBC (red blood
cells) as previously described [44, 45].
PLA2 activity was evaluated also through the hydroly-

sis of synthetic fluorescent phospholipid, using the
fluorescent substrate Acyl 6:0 NBD phospholipid, NBD-
phosphatidylcholine (NBD-PC). The assay was perfor
med using a spectrofluorimeter (Shimadzu, RF-5301PC,
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software RFPC) with excitation and emission wavelengths
of 460 and 534 nm, respectively. The enzymatic activity of
each cnidarian extract was evaluated for 250 s after the
addition of substrate (3.3 μg/mL, final concentration) in a
reaction medium containing 50 mM Tris-HCl, and 8 mM
CaCl2, pH 7.5, at room temperature.

Proteolytic activity assay
Proteolytic activity upon fibrinogen was measured as de-
scribed by [46] with some modifications. Fibrinogen
(70 μg) diluted in PBS was incubated with different
amounts of cnidarian extracts diluted in 20 μL buffer
(pH 7.5) at 37 °C for 2 h. The reaction was stopped with
20 μL of a solution containing 10% (v/v) glycerol, 10%
(v/v) β-mercaptoethanol, 2% (v/v) SDS, and 0.05% (w/v)
bromophenol blue. Fibrinogen hydrolysis was demon-
strated by SDS-PAGE using 12% polyacrylamide gels.
Proteolytic activity upon casein was measured as de-
scribed by [47]. Cnidarian extracts (100 and 500 μg)
were incubated for 30 min at 37 °C in a solution of
0.1 M Tris-HCl pH 9.0 containing 1% casein. After the
incubation period, 1.5 mL of 30% TCA was added to
each sample to stop the enzymatic reaction and centri-
fuged at 340 x g for 25 min. Then, the samples were read
on a spectrophotometer at a wavelength of 280 nm. One
unit of protease activity was defined as the amount of
enzyme that produces an increase in absorbance of
0.001 units/minute at 280 nm.

Hemorrhagic activity assay
Hemorrhagic activity was quantitatively estimated by the
method of [48] with some modifications. Groups of six
Swiss mice (18-22 g) were shaved on the back and then
intradermally (i.d.) injected with different doses of cni-
darians extracts or snake venoms, in 50 μL of phosphate
buffered saline (PBS). After 2 h, animals were anesthe-
tized and euthanized. The shaved back skin was re-
moved and the hemorrhagic halo diameter was
measured. The minimum hemorrhagic dose (MHD) was
obtained from the mean of these diameters (mm). The
MHD is defined as the dose of snake venom or extract
that produces a hemorrhagic lesion of 10 mm diameter
after 2 h.

Coagulant activity assay
The clotting time was determined by mixing 20 μL of the
samples (in 0.15 M NaCl, pH 7.4) with 200 μL of citrated
bovine plasma at 37 °C. The B. jararacussu snake venom
(20 μg) was assayed in order to determine the minimum
coagulant dose (corresponding to the time between 1 and
1.2 s – 100% activity). For the neutralization trials, the
snake venom was previously incubated with different cni-
darian extracts for 30 min at 37 °C, at different propor-
tions (1:5, 1:10 and 1:30, w/w).

Neuromuscular blocking
Mice were euthanized by exsanguination after previous
cervical dislocation. Phrenic-diaphragm (PD) preparation
was removed and mounted vertically in a conventional
isolated organ-bath chamber containing 15 mL of physio-
logical solution of the following composition (mmol/L):
NaCl, 135; KCl, 5; MgCl2, 1; CaCl2, 2; NaHCO3, 15;
Na2HPO4, 1; glucose, 11. This solution was bubbled with
carbogen (95% O2 and 5% CO2). The preparation was at-
tached to an isometric force transducer (Grass, FT03) for
recording the twitch tension. The transducer signal output
was amplified and recorded on a computer via a trans-
ducer signal conditioner (Gould, 13–6615-50) with an Ac-
quire Lab Data Acquisition System (Gould). The resting
tension was 5 g; indirect contractions were stimulated by
supramaximal pulses (0.2 Hz, 0.5 ms) delivered from an
electronic stimulator (Grass-S88 K) and applied to the
phrenic nerve by means of a suction electrode. The prep-
aration was allowed to stabilize for 45 min before the
addition of a single concentration of toxin [49].

Muscle-damaging activity
Morphological analysis
At the end of the myographic study, the diaphragm
muscle was removed from the bath and frozen in liquid
nitrogen. Transverse sections (8 mm thick) were cut out
at − 20 °C in a cryostat and stained with hematoxylin and
eosin (HE) prior to examination by light microscopy [50].
Muscle damage was quantified in HE stained prepara-
tions, using an Analysis Imaging System (Leica, Qwin).
The number of fibers with lesions was expressed as a per-
centage of the total number of cells (muscle damage
index), in three non-overlapping non-adjacent areas of
each muscle, observed at the same magnification.

Creatine kinase release
The creatine kinase (CK) assay was carried out using the
CK-UV kinetic kit from Sigma Chem. Co. Different
cnidarian extracts were injected (i.m., 50 μL) into Swiss
male mice weighing 18–22 g (n = 6). The control
animals received 0.15 M PBS. After 3 h, the blood from
the tail was collected in heparin-coated tubes and centri-
fuged for plasma separation. The amount of CK was
then determined using 4 μL of plasma, which was incu-
bated for 3 min at 37 °C with 1.0 mL of the reagent. En-
zyme activity was expressed in international units per
liter (IU/L), with one unit of activity corresponding to
phosphorylation of 1 μmol of creatine/min at 25 °C.

Edema inducing activity
Groups of six Swiss male mice (18–22 g) were injected
in the sub plantar region with different doses of cnidar-
ian extracts in 50 μL of PBS. After 0.5, 1 and 3 h, the
paw edema was measured using a low-pressure spring
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caliper (Mytutoyo-japan) [51, 52]. The zero time values
were then subtracted and the differences reported as
median % ± S.D.

Cytotoxic activity
Tumor cell cytotoxic activity of cnidarian extracts on
human acute T-cell leukemia (Jurkat) and B16F10 cell
lines were assayed using the MTT method according to
[53]. Cells were dispersed in 96-well plates at a density
of 1 × 105 cells per well. After 24 h of culture, the media
were removed and fresh media, with or without different
concentrations of samples, were added into the wells
and incubated for 24 h. The extracts were evaluated at
1000, 100 and 10 μg/mL concentrations using Vincris-
tine as positive control (100 μg/mL). Results were
expressed as a percentage (%).

Statistical analysis
Results were expressed as mean ± S.D. Data was ana-
lyzed by ANOVA complemented by the Tukey-Kramer
test, using the statistical program GraphPad 5.0. Values
of p < 0.05 were considered significant.

Results and discussion
The SDS-PAGE analysis in denaturing conditions of the
cnidarian extracts showed the difference between ex-
tracts of C. gigantea (body-wall), C. gigantea (total), S.
helianthus, B. annulata, M. alcicornes and P. homo-
malla. Considering that the extracts were obtained from
the entire organism, it should be noted that the anatomy
of M. alcicornes and P. homomalla is different from that

of anemones. For this reason, the method of protein ex-
traction must be differentiated for these organisms.
Thus, it is possible that in the 500 μg extract applied to
the electrophoresis, a low protein yield made it impos-
sible to visualize bands on the polyacrylamide gel
(Fig. 1a).
The extracts of S. helianthus and C. gigantea (body-

wall) hydrolyzed the NBD-PC substrate that is specific
for the PLA2 enzymes, which was not observed for the
other extracts tested (Fig. 2b). Martins and coworkers
[54] isolated a PLA2 (CgPLA2) composed of 14 kDa di-
mers and 29 kDa monomer from the C. gigantea extract.
Another study reported showed that Sticholysin I and II,
two 19 kDa pore-forming cytokines, present in the S. he-
lianthus extract, low activity against specific substrates
for phospholipase activity when tested alone [55].
However, fractions enriched with these two molecules

together demonstrated a significant increase in phospho-
lipase activity [56]. Although CgPLA2 and Sticholysin I
and II are known to exert phospholipase activity, it
should be emphasized that the experiments were carried
out with total extract. It is possible that these molecules
are responsible for the hydrolysis promoted against the
NBD-PC substrate, but we do not rule out the existence
of other molecules that are components of the extract,
which alone or in clusters may be acting in the hydroly-
sis of the NBD-PC substrate.
As shown in Fig. 2a, all extracts displayed indirect

hemolytic activity. However, only extracts of S. helian-
thus and C. gigantea showed direct hemolytic activity by
lysis of red blood cells, in a concentration-dependent

Fig. 1 (a) PAGE in the presence of SDS and β-mercaptoethanol. Lanes: 1 – standard, molecular-weight markers; 2 – C. gigantea (body-wall); 3 – C.
gigantea (total); 4 – M. alcicornes; 5 – S. helianthus; 6 – P. homomalla; 7 – B. annulata; samples were applied containing 500 μg of each extract. (b)
Fibrinogenolytic activity of cnidarian extracts.1 – Fibrinogen; 2 – fibrinogen + C. gigantean (body-wall); 3 – fibrinogen + C. gigantea (total); 4 –
fibrinogen + M. alcicornes; 5 – fibrinogen + S. helianthus; 6 – fibrinogen + P. homomalla; 7 – fibrinogen + B. annulata. Fibrinogen hydrolysis was
demonstrated by SDS-PAGE using 12% polyacrylamide gels
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manner (Fig. 3a, b). Hemolysis was provoked not only
by anemone extract as observed in B. annulate [57] and
S. helianthus [58] but also by M. alcicornes aqueous ex-
tract [8]. In addition, Sticholysin II toxin isolated from S.
helianthus has also been described for its hemolytic cap-
acity [45, 59–63].
The extracts of C. gigantea (body wall) and B. annu-

lata were able to partially hydrolyze the α and β chains
of fibrinogen; however, S. helianthus, M. alcicornis and
P. homomalla were incapable of hydrolyze fibrinogen ef-
ficiently (Fig. 1b). The fibrinogenolytic assay was carried
out using 50 μg of the cnidarian extracts, whose proteo-
lytic activity upon casein was evaluated; furthermore, the
extract of B. annulata (100 μg) hydrolyzed casein at
80 U/min. The extracts of C. gigantea (body wall) and B.
annulata at 500 μg hydrolyzed casein at 118 and 170 U/
min, respectively (Fig. 2c).
As to the hemorrhagic effect, extracts of M. alcicornis

and P. homomalla induced bleeding at a concentration

of 150 μg (Fig.4a) and inhibited bleeding induced by
Bothrops snake venom. All cnidarians extracts tested
inhibited the hemorrhagic activity induced by B. moojeni
venom at a ratio of 1:30 w/w, showing approximately
40% inhibition in the presence of extracts of C. gigantea
(body wall), P. homomalla and M. alcicornis (Fig.4c).
Interestingly, the B. neuwiedi venom extracts did not in-
hibit hemorrhage (Fig. 4b).
Coagulant activity was not induced by cnidarian ex-

tracts. However, all cnidarian extracts except M. alcicor-
nis inhibited the coagulant activity induced by B.
jararacussu venom at the ratios of 1:5 and 1:10 w/w. In
this assay, the B. annulata extract at a 1:30 w/w ratio
showed the greatest ability to delay the clotting time of
citrated plasma after the addition of B. jararacussu
venom for more than 40 min (Table 1). The other ex-
tracts tested at the 1:30 w/w ratio presented lower in-
hibitory effect (Fig. 5). Additionally, C. gigantea
body-wall extract at a concentration of 200 μg/mL were

Fig. 2 Phospholipase and proteolytic activities induced by cnidarian extracts. (1) C. gigantea (body-wall), (2) C. gigantea (total), 3) M. alcicornis, (4) S.
helianthus (5) P. homomalla and (6) B. annulata. (a) The PLA2 activity using the indirect hemolytic assay on agarose gels containing red blood cells and
egg-yolk phospholipids and by (b) Hydrolysis of the NBD-PC by cnidarian extracts (1–6). (c) Proteolytic activity upon 1% casein evaluated with 100 and
500 μg of cnidarian extracts for 30 min at 37 °C. Results are reported as mean % ± SD (n = 3)
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Fig. 4 Induction and Inhibition of hemorrhagic activity. (a) Hemorrhage induced by snake venoms: (Bj) B. jararacussu, (Bp) B. pirajai, (Ba) B.
alternatus, (Bn) B. neuwiedi, (Bm) B. moojeni - all venoms at 30 μg and, cnidarian extracts: (1) C. gigantea (body-wall), (2) C. gigantea (total), (3) M.
alcicornis, (4) S. helianthus (5) P. homomalla, (6) B. annulata - all extracts at 150 μg. (b) Inhibition of hemorrhagic activity induced by B. neuwiedi
(Bn) at 20 μg and; (c) Inhibition of haemorrhagic activity induced by B. moojeni (Bm) at 10 μg. Results are reported as mean % ± S. D (n = 3)

Fig. 3 Hemolytic activity of cnidarian extracts. (1) C. gigantea (body-wall), (2) C. gigantea (total), (3) M. alcicornis, (4) S. helianthus, (5) P. homomalla
and (6) B. annulata. (a) Percentage of hemolytic activity tested at different doses from 50 to 2000 μg; (b) the hemolysis was tested at the same
200 μg/mL concentration
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able to inhibit thrombin-induced coagulation. This activ-
ity can be produced by the presence of protease inhibi-
tors, as reported by [64], who showed the presence of
protease inhibitory activity in the extract from the mar-
ine sponge Xetospongia muta (Poriphera) and in the sea
anemones B. granulifera and B. annulata. According to
these authors, this activity was dose-dependent and the
molecule responsible for the inhibition had a low mo-
lecular weight. Di Bari and coworkers [65] also described
the presence of protease inhibitors in aqueous extracts
of marine sponges; all extracts were able to inhibit the
activity and expression of matrix metalloproteinases
(MMP-2 and MMP-9) in mice astrocyte culture.
At 3 h after the injection of 50 μg of cnidarian extracts

into the gastrocnemius mouse muscle, a slight myotoxic
effect from the extracts of M. alcicornis and P. homo-
malla was observed, approximately 22% above those ob-
served for the controls injected with PBS alone. The C.

gigantea (body-wall), C. gigantea (total) and S. helian-
thus presented increased activity, while extract of B.
annulata did not show myotoxic effect.
Some studies have demonstrated the toxic effects of

marine animals such as coral Millepora alcicornis, which
causes systemic reactions in the kidney, lung and liver
[8], and Millepora complanata, which presents
non-peptide toxins highly lethal to mice with LD50 of
4.62 μg/g body weight [66]. The other cnidarian extracts
tested, C. gigantea (body-wall), C. gigantea (total) and S.
helianthus, showed a more pronounced myotoxic effect,
smaller only compared with to those induced by B. jar-
aracussu venom and the myotoxin BthTX-I, which are
highly myotoxic (Fig. 6a). The edema induction was
observed only in the presence of extracts from P. homo-
malla and S. helianthus (Fig. 6b).

Fig. 5 Effect of cnidarian extracts on coagulation.(1) C. gigantea
(body-wall), (2) C. gigantea (total), (3) M. alcicornis, (4) S. helianthus,
(5) P. homomalla, (6) B. annulata, 200 μg/mL of the extract were
pre-incubated with fibrinogen; clotting was then started by the
addition of thrombin and monitored at A405 nm. Results are
reported as mean % ± S. D (n = 3)

Fig. 6 Myotoxic activity and edema-induction by cnidarian extracts.
(Bj) B. jararacussu snake venom and (BthTX-I) Bothropstoxin-I from B.
jararacussu (1) C. gigantea (body-wall), (2) C. gigantea (total), (3) M.
alcicornis, (4) S. helianthus (5) P. homomalla, (6) B. annulata. (a) CK
activity was measured 3 h after the i.m injection of 50 μL with 50 μg
of each cnidarian extracts (1–6) and 20 μg of the Bj and BthTX-I.
Results are presented as means ± S.D. (n = 4). (b) Paw edema in
Swiss mice was induced by injection of 100 μg of cnidarian extracts
and 10 μg of Bj at 30, 60 and 180 min. Results are reported as mean
% ± S. D (n = 6)

Table 1 Clotting activity inhibition from B. jararacussu snake
venom by cnidarian extracts

Clotting Time (min.)

Samples (1:5) Samples (1:10) Samples (1:30)

B. jararacussu (20 μg) 1.08 1.10 1.05

C. gigantea (body-wall) 1.08 15 16.2

C. gigantea (total) > 3 > 3 12.0

M. alcicornis > 3 1.24 1.13

S. helianthus 2.4 > 3 > 3

P. homomalla > 3 > 3 11.4

B. annulata 2.1 > 3 > 40
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In isolated neuromuscular preparation, extract from S.
helianthus (100 μg/mL) induced a time-dependent block-
age of indirect twitches (Fig. 7). After 300 min, the twitch
amplitude was reduced by about 84%. In contrast, at the
same concentration, extracts from C. gigantea (body wall)
and C. gigantea (total) did not affect the indirectly evoked

twitches. Morphological and morphometric analyses re-
vealed an absence of significant damage in diaphragm
muscles exposed to S. helianthus and C. gigantea total ex-
tracts (Fig. 8). On the other hand, a slight, but significant
level of damage was observed in muscles exposed to C.
gigantea body wall extract (Fig. 8).

Fig. 7 Effects of S. helianthus extract (100 μg/mL) upon indirect evoked twitches on mouse phrenic-diaphragm preparation. The ordinate
represents the % amplitude of twitches relative to the initial amplitude. The abscissa indicates the time (min) after the addition of the extract to
the organ bath. Vertical bars represent the SEM; *indicates the point from which there are significant differences relative to control (p < 0.05)

Fig. 8 Light micrographs of mouse diaphragm muscles submitted to hematoxylin and eosin staining. Control muscle (a) and muscles exposed to
extracts of C. gigantea (body-wall) (b), C. gigantea (total) (c) and S. helianthus (d). Note the general normal appearance of fibers with polygonal
aspect (f) and endomysium (en). Muscle damage index of (C) and (D) (4.3 ± 1.3, n = 5 and 5.5 ± 1.1, n = 4, respectively) were not significantly
different from that of (A) (2.0 ± 0.4, n = 5). However, muscle damage of B (5.9 ± 0.8, n = 5) was significantly higher than that of A. (ANOVA, p ≤
0.05). The remaining cnidarian extracts did not show such activity
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The cytotoxic activity of cnidarian extracts upon the
human tumor cell lines JURKAT (leukemia T) and
B16F10 (melanoma) (Fig. 9a and b) showed that all ex-
tracts presented anti-tumor activity against JURKAT
cells, except the extract B. annulata. Additionally, ex-
tracts of C. gigantea (body-wall) and S. helianthus
showed significant anti-tumor activity at concentrations
of 1000 μg/mL, of which the latter still showed cytotoxic
activity of 50% even at the lowest concentration evalu-
ated (10 μg/mL). As to their activity on B16F10 cells,
only the extract of C. gigantea (body wall) and M. alci-
cornis showed anti-tumor activity at concentrations of
1000 and 100 μg/mL. Some authors proposed that this
cytotoxic activity on tumor cell lines is associated with
the induction of apoptosis considering the fact that some
enzymes isolated from animals exhibit hydrolytic activity
by altering the cell membrane [67]. Another study re-
ported the cytotoxic effect of extracts from the marine
sponge Polymastia janeirensis on a human glioma line
(U138MG); in the experiment, both aqueous and organic
extracts induced cell death by apoptosis and necrosis
[68]. Similar results with extracts from the sponge Hyat-
tella cribriformis in ethyl acetate, which exhibited potent

growth inhibition of tumor cells as sarcoma, ovarian
cancer, colon and breast cell lines [69].

Conclusions
The neutralization of the clotting induced by B. jarara-
cussu snake venom and the inhibition of the
hemorrhagic activity induced by B. moojeni venom were
demonstrated by the majority of the cnidarian extracts
tested, whereas the ability to inhibit thrombin-induced
coagulation was shown by the C. gigantea (body wall).
Together with the anti-tumor effect against JURKAT
cells demonstrated by all cnidarian extracts tested and
the specificity shown against B16F10 cells, these findings
constitute important evidence that cnidarians extracts
are a rich source of bioactive molecules that should be
studied in order to produce data for the development of
new alternatives for snakebite envenomation and cancer
therapies.
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